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Abstract

The paper introduces a notion of a budget-
constrained multiagent transition system that asso-
ciates two financial parameters with each transi-
tion: a pre-transition minimal budget requirement
and a post-transition profit. The paper proposes
a new modal language for reasoning about such a
system. The language uses a modality labeled by
agent as well as by budget and profit constraints.
The main technical result is a sound and complete
logical system that describes all universal proper-
ties of this modality. Among these properties is a
form of Transitivity axiom that captures the inter-
play between the budget and profit constraints.

1 Introduction

Budget-Constrained Transition System. In this paper we
propose a model of multiagent transition systems in which
agents incur cost of performing transitions. For example, con-
sider transition system depicted in Figure 1. This system has
three states: w, u, and v and two agents that can perform the
transitions: agent a and agent c. It costs agent a two dollars
to transition the system from state w to state u. This is shown
in the figure by labeling one of the transitions from state w
to state u with agent a and the negative profit −$2 that the
agent incurs if she chooses to make this transition. The cost
of the same transition to agent c is $5. The same figure shows
that agent a can recover her costs by making a loop transition
from state u back to state u. This transition yields profit of
$1. The loop transition can be potentially repeated by agent
a multiple number of times for an additional profit.
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Figure 1: Multiagent Transition System with Costs.

Although in this paper we use financial terminology, in
many cases the same model could be used to reason about
other types of resources such as time, storage, network ca-
pacity, reputation.

So far, we have assumed that an agent can make any tran-
sition labeled with her name. In many real-life settings there
are financial barriers on performing transitions. For exam-
ple, in order to make a profit from an investment one needs
to have money available to make the investment. In other
situations, there might be various fees, fixed overhead costs,
and other similar initial costs of doing business. We model
such requirements by assuming that in addition to profit each
transition is also labeled with the minimal budget needed to
initiate the transition. For example, Figure 2 depicts a transi-
tion system in which agent a has two transitions from state w
to state u. The first transition requires only the initial invest-
ment of $1. After taking this transition, the agent not only
recovers this investment, but she makes an additional profit
of $3. In other words, if she starts the transition with $100
in hands, she will have $103 after the transition is finished.
The second transition has a larger initial budget requirement
of $5, but it also brings a larger profit of $4. If the agent
starts this transition with the same $100, she will have $104
after the transition is finished. Thus, the agent might prefer to
make the second transition unless she has insufficient initial
funds. The same figure also shows a transition from state u to
state v. If this transition is taken, the agent not only will not
recover her original investment, but she will lose additional
$2, making her profit on this transition to be −$5.
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Figure 2: System with Budget Requirements.

In this paper we adopt the described above approach of
labeling each transition with the initial budget requirement
and the profit. Alternatively, one can use transitions of the
form given in Figure 1 and capture initial budget requirement
through introduction of additional “ghost” states. Figure 3
uses this alternative approach to specify essentially the same
transition system as the one depicted in Figure 2.

Budget-Constraint as a Modality. There are many different
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Figure 3: System with “ghost” states.

questions that can be asked about the described above budget-
constrained transition systems. The focus of this paper is on
a modal logic for reasoning about agents’ abilities in such
systems. At the core of our logical system is modality [a]pbφ
that stands for “statement φ is true after any sequence of tran-
sitions that agent a can perform on a budget at most b that
results in a profit of at least p”. For example, consider the
transition system depicted in Figure 4.

P¬ P

¬ P
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Figure 4: w ⊩ [a]23 P .

This system has four states: u, v, w, and s. Although
atomic proposition P is true only in state v of this model,
statement w ⊩ [a]23 P is true in this system. In other words,
the only states that can be reached from state w with budget
3 and profit 2 is state v. Indeed, state s is not reachable under
these financial constraints because transition from state w to
state s has initial budget requirement of 4, which is greater
than our given budget 3. State u is reachable from state w
given our constraints on budget, but the profit of 1 achieved
after the transition from state w to state u would not satisfy
our minimal profit requirement of 2. Finally, the state w can
be reached from itself on a zero budget without any transi-
tions, but it can not be reached with the minimal required
profit of 2.
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Figure 5: w ⊩ [a]20 [c]
2
0 P .

Modalities of the form [a]pb can be nested. For example,
formula [a]20 [c]

2
0 P states that after any sequence of transi-

tions by agent a on budget 0 and with profit at least 2 fol-
lowed by any sequence of transitions by agent c on budget 0
and with profit at least 2, statement P is satisfied. Formula
[a]20 [c]

2
0 P , for example, holds in state w of the transition sys-

tem depicted in Figure 5.

As it is common in modal logic, one can define a
dual (“possibility”) modality ⟨a⟩pbφ as an abbreviation for
¬[a]pb¬φ. Informally, statement ⟨a⟩pbφ means that on a bud-
get b and a minimal profit requirement p, agent a can transit
the system into a state where statement φ is satisfied. For ex-
ample, for the transition system depicted in Figure 6, with an
initial budget of 1 agent a can reach a state where P is true,
while making a profit of 300. Or, using our formal notations,
w ⊩ ⟨a⟩3001 P . Indeed, although with budget of just 1 agent a
can not make a transition from state w to state u at first, she
will be able to make this transition after 99 loop transitions
from state w back to state w. The latter is true because each
of the loop transitions increases her available funds by 1.

¬ P

w u

Paa 100 200

1

1

Figure 6: w ⊩ ⟨a⟩3001 P .

By combining modalities for different agents, we can ex-
press interaction between these agents. For example, formula
w ⊩ ⟨a⟩00 ⟨c⟩1000 ⊤, where ⊤ is the Boolean truth constant,
says that at zero expense to herself agent a can create and
opportunity for agent c to make a profit of 100. This for-
mula is true, for example, for the transition system depicted
in Figure 7. To create such an opportunity, the agent a needs
to first accumulate profit 100 by making 100 loop transitions
from state w to state w. Second, agent a uses the accumu-
lated profit to transition from state w to state u. From state u
agent c can make 100 loop transitions to accumulate her own
profit of 100. On the other hand, formula w ⊩ ⟨a⟩00 [c]1000 ⊥,
where ⊥ is the Boolean false constant, says that at zero ex-
pense agent a can “prevent” agent c from making a profit of
100.

w u

aa 100 -100

0

1

c

0

1

Figure 7: w ⊩ ⟨a⟩00 ⟨c⟩1000 ⊤.

We have stated earlier that we informally interpret modal-
ity ⟨a⟩pbφ to mean that on a budget b and a minimal profit
requirement p agent a can transition the system into a state
where statement φ is satisfied. The meaning of word “can”
needs to be clarified in the situation when there are multiple
transitions from the same states labeled with different agents.
For example, in the transition system depicted in Figure 8

wu

Qc0 1P

v

a1 0

Figure 8: w ⊩ ⟨a⟩10 P ∧ ⟨c⟩10Q.

agent a “can” transition the system from statew to state u and
agent c “can” transition the system from state w to state v, but
of courses they can not do both. Informally, in this paper we
interpret modality ⟨a⟩ as “agent a, if it acts fast enough, can
...”. Thus, from the point of few of the formal semantics that
we define later in this paper, in the transition system depicted
in Figure 8 both of the following is true: w ⊩ ⟨a⟩10 P and
w ⊩ ⟨c⟩10Q.



Logical System. The discussed above modal formulas are
satisfied in some states of some transition systems and are not
satisfied in the others. In this paper we are interested in the
properties of budget-constrained modality that are satisfied
in all states of all transition systems. An example of such
property is distributivity:

[a]pb(φ→ ψ) → ([a]pbφ→ [a]pbψ). (1)

Informally, it states that if statement φ → ψ is satisfied in all
states that agent a can reach with budget b at a profit of at least
p and statement φ is also in all such states, then statement ψ
is satisfied in the same states.

A more interesting example of such a property is the fol-
lowing form of transitivity:

[a]p+q
b φ→ [a]pb [a]

q
b+pφ. (2)

Informally, it states that if statement φ is satisfied in all states
that agent a can reach with budget b at a profit of at least p+q,
then statement φ is satisfied in any state that agent a can reach
by first making a sequence of moves on budget b bringing a
profit of at least p and than making a sequence of moves on
budget b+p bringing a profit of at least q. The reason why the
budget for the second sequence of moves is b+ p and not just
b is that the agent’s budget after the first sequences of moves
is adjusted by the profit she makes during these moves.

In a formula of the form [a]pbφ, value of b represents the
budget available to the agent. The budget represents the funds
available to the agent before it starts the transitions and it is
assumed that the balance never goes below zero. Because of
this we only allow non-negative values of the budget b. Profit,
on the other hand is different. A sequence of transitions can
result in balance increase, which corresponds to a positive
profit or a balance decrease, which corresponds to a negative
profit. A special case of a sequence of transitions is the empty
sequence. It has zero profit and can be accomplished on a zero
budget. Thus, if p ≤ 0 and formula φ is satisfied in any state
that agent a can reach from state w by making a sequence of
moves on budget b bringing a profit of at least p, then formula
φ must be satisfied in the state w as well:

[a]pbφ→ φ, where p ≤ 0. (3)

There are two monotonicity principles for the modality
[a]pb . The first of them says that anything that can be achieved
on a smaller budget can also be achieved on a larger bud-
get: ⟨a⟩pdφ → ⟨a⟩pbφ, where d ≤ b. This principle could be
rephrased in terms of modality [a]pb as

[a]pbφ→ [a]pdφ, where d ≤ b. (4)

The other monotonicity principle states that anything that
can be achieved with a profit at least q could also be achieved
with profit at least p, where p ≤ q. That is ⟨a⟩qbφ → ⟨a⟩pbφ,
where p ≤ q. Rephrased in terms of modality [a]pb ,

[a]pbφ→ [a]qbφ, where p ≤ q. (5)

Perhaps surprisingly, in Lemma 1 we prove that principle (5)
logically follows from principles (1), (2), and (3). Further-
more, in Theorem 2 we show that principles (1), (2), (3), and

(4) form a complete logical system describing all universal
properties of budget-constrained dynamics.

Literature Review. The logical system proposed in this pa-
per could be viewed as a form of dynamic modal logic [Harel
et al., 2000]. Instead of a specific program that transition sys-
tem from one state to another we consider budget and profit
associated with such a transition.

The axiomatic system proposed in this paper is also re-
lated to other logical systems for reasoning about bounded re-
sources. The classical logical system for reasoning about re-
sources is the linear logic [Girard, 1987; Ryu, 1998; Costan-
tini and Formisano, 2013]. Alechina and Logan [2002] pre-
sented a family of logical systems for reasoning about beliefs
of a perfect reasoner that can only derive consequences of her
beliefs after some time delay. This approach has been fur-
ther developed into the multi-agent Timed Reasoning Logic
in [Alechina et al., 2004]. Bulling and Farwer [2010a] pro-
posed Resource-Bounded Tree Logics for reasoning about
resource-bounded computations and obtained preliminary re-
sults on the complexity and decidability of model checking
for these logics. Their logical system dealing with agent’s
endowment [Bulling and Farwer, 2010b] is closely related to
our current work, but their focus is on model checking rather
than a complete axiomatization. Alechina, Logan, Nga, and
Rakib [2011] incorporated resource requirements into Coali-
tion logic and gave a sound and complete axiomatization of
the resulting system.

Alechina, Logan, Nguyen, Raimondi and Mostarda [2015]
implemented a model checking algorithm for the verifica-
tion of properties expressed in Resource-Bounded Alternat-
ing Time Temporal Logic.

Naumov and Tao introduced sound and complete modal
logics for reasoning about budget-constrained knowl-
edge [2015] and cost of privacy [2016]. Balbiani, Fernández-
Duque, and Lorini [2016a; 2016b] introduced a logical sys-
tem for belief dynamics of resource-bounded agents. Another
logical system for reasoning about knowledge under bounded
resources was proposed by [Jamroga and Tabatabaei, 2013].
Their paper focuses on the expressive power of the language
of the system and the model checking algorithm.

Unlike the current paper, described above works consider
neither profit and budget constraints nor their interplay.

Outline. This paper is organized as following. In Section 2
we define syntax and formal semantics of our logical system.
In Section 3 state axioms and inference rules of this system
as well as prove principle (5) from these axiom. We show
soundness of the axioms in Section 4 and their completeness
in Section 5. Section 6 concludes.

2 Syntax and Semantics
In this section we define syntax and formal semantics of our
logical system. We assume a fixed set of agents A and a fixed
set of propositional variables. As we have discussed in the
introduction, value b in the expression [a]pbφ represents the
budget available to agent a. Since we assume that the balance
never goes below zero, we restrict the syntax of our system to
subscript b being a non-negative real number.



At the same time, the value of superscript p could be neg-
ative if the agent looses money during a sequence of transi-
tions. Since the losses can not be larger than initially available
funds, we restrict the syntax by the assumption −b ≤ p.

Definition 1 Let Φ be the minimal set of formulas such that

1. P ∈ Φ for each propositional variable P ,

2. φ→ ψ ∈ Φ for each φ,ψ ∈ Φ,

3. ¬φ ∈ Φ for each φ ∈ Φ,

4. [a]pbφ ∈ Φ for each φ ∈ Φ, each p, b ∈ R, and each
a ∈ A, where 0 ≤ b and −b ≤ p.

Let symbol R denote the set of all real numbers and symbol
R+

0 denote the set of all non-negative real numbers.

Definition 2 A transition system is triple ⟨V, T,⊩⟩, such that

1. V is an arbitrary finite set of “states”,

2. T ⊆ V × R+
0 ×A× R× V is a set of “transitions”,

3. ⊩ is a satisfiability relation between states and proposi-
tional variables.

For example, for the transition system depicted in Figure 8,
set of states V is the set {u, v, w}, set of transitions T is the
set {(w, 0, a, 1, u), (w, 0, c, 1, v)}, and satisfiability relation
⊩ is the relation {(u, P ), (v,Q)}.

Definition 3 We extend satisfiability relation ⊩ to a relation
between vertices in V and formulas in Φ as follows:

1. v ⊩ ¬φ if v ⊮ φ,

2. v ⊩ φ→ ψ if v ⊮ φ or v ⊩ ψ,

3. v ⊩ [a]pbφ if vn ⊩ φ for all sequences (v0, b1, a, p1, v1),
(v1, b2, a, p2, v2), . . . , (vn−1, bn, a, pn, vn) ∈ T such
that

(a) n ≥ 0,
(b) v0 = v,
(c)

∑n
i=1 pi ≥ p,

(d) b+
∑k−1

i=1 pi ≥ bk for each 1 ≤ k ≤ n.

The condition (c) in the above definition captures the assump-
tion that the total profit along the computational path is at
least p and the condition (d) states the requirement that at any
point in the path the agent performs a transition only if she
has accumulated sufficient funds for this transition.

3 Axioms
In addition to propositional tautologies in language Φ, our
logical system consists of the following axioms:

1. Reflexivity: [a]pbφ→ φ where p ≤ 0,

2. Transitivity: [a]p+q
b φ→ [a]pb [a]

q
b+pφ,

3. Distributivity: [a]pb(φ→ ψ) → ([a]pbφ→ [a]pbψ),

4. Monotonicity: [a]pbφ→ [a]pdφ, where d ≤ b.

Formula φ is a theorem of our logical system and write ⊢ φ
if formula φ is provable in our logical system using the above
axioms and Necessitation and Modus Ponens inference rules:

φ

[a]pbφ

φ φ→ ψ

ψ
.

We writeX ⊢ φ if formulaφ is provable from the theorems
of our logical system and the set of additional axiomsX using
only Modus Ponens inference rule.

To conclude this section we prove principle (5) from the
axioms of our logical system. This principle has been dis-
cussed in the introduction. The soundness of our logical sys-
tem is established in Section 4.
Lemma 1 ⊢ [a]pbφ→ [a]qbφ, where p ≤ q.
Proof. Note that −b ≤ p by Definition 1. Hence, −b ≤
p ≤ q due to the assumption of the lemma. Thus, 0 ≤ b+ q,
−(b + q) ≤ p − q, and p − q ≤ 0. Hence, by Reflexivity
axiom ⊢ [a]p−q

b+qφ → φ. Then, ⊢ [a]qb([a]
p−q
b+qφ → φ) by

Necessitation inference rule. Thus, by Distributivity axiom
and Modus Ponens inference rule,

⊢ [a]qb [a]
p−q
b+qφ→ [a]qbφ. (6)

On the other hand, inequality −b ≤ p ≤ q also implies
that −b ≤ q + (p − q) and −(b + q) ≤ p − q. Hence,
by Transitivity axiom, ⊢ [a]

q+(p−q)
b φ → [a]qb [a]

p−q
b+qφ. In

other words, ⊢ [a]pbφ → [a]qb [a]
p−q
b+qφ. Thus, taking into

account formula (6), by the laws of propositional reasoning,
⊢ [a]pbφ→ [a]qbφ. ⊠

4 Soundness
In this section we prove soundness of our logical system with
respect to the formal semantics given earlier. We state this
result as Theorem 1 below.

Theorem 1 Let φ ∈ Φ. If ⊢ φ, then v ⊩ φ for every state
v ∈ V of every model ⟨V, T,⊩⟩.

Soundness of most of the axioms and inference rules is
straightforward. Below we show the soundness of Transitiv-
ity axiom.

Suppose v ⊩ [a]p+q
b φ. Consider any sequence of tuples

(v0, b1, a, p1, v1), . . . , (vm−1, bm, a, pm, vm) ∈ T such that
m ≥ 0, v0 = v,

m∑
i=1

pi ≥ p, (7)

and

b+
k−1∑
i=1

pi ≥ bk (1 ≤ k ≤ m). (8)

By Definition 3, it suffices to prove that vm ⊩
[a]qb+pφ. Indeed, consider any sequence of tuples
(vm, bm+1, a, pm+1, vm+1), . . . , (vn−1, bn, a, pn, vn) ∈ T
such that m ≤ n,

n∑
i=m+1

pi ≥ q, (9)



and

(b+ p) +

k−1∑
i=m+1

pi ≥ bk (m+ 1 ≤ k ≤ n). (10)

It suffices to show that vn ⊩ φ. To do this, first notice that,
due to inequalities (7) and (9),

n∑
i=1

pi =

m∑
i=1

pi +

n∑
i=m+1

pi ≥ p+ q.

Second, we show that b+
∑k−1

i=1 pi ≥ bk for each 0 ≤ k ≤ n
by considering cases 0 ≤ k ≤ m and m + 1 ≤ k ≤ n sep-
arately. In the first case, the required follows from statement
(8). In the second case, due to inequalities (7) and (10),

b+
k−1∑
i=1

pi = b+
m∑
i=1

pi +
k−1∑

i=m+1

pi

≥ b+ p+
k−1∑

i=m+1

pi ≥ bk.

Therefore, vn ⊩ φ by the assumption v ⊩ [a]p+q
b φ and Defi-

nition 3. This concludes the proof of Theorem 1 .

5 Completeness
In this section we prove completeness of our logical sys-
tem. This result is stated and proven in the end of the sec-
tion as Theorem 2. We start by specifying a canonical model
⟨V, T,⊩⟩ using “unraveling” technique [Sahlqvist, 1975].
Definition 4 Let set V be the set of all sequences

⟨X0, (a1, b1, p1, ψ1), X1, . . . , (an, bn, pn, ψn), Xn⟩
such that

1. n ≥ 0,
2. Xi is a maximal consistent subset of Φ for each i ≥ 0,
3. ¬[ai]pi

bi
ψi ∈ Xi−1 for each i ≥ 1,

4. ¬ψi ∈ Xi for each i ≥ 1,
5. {χ | [ai]pi

bi
χ ∈ Xi−1} ⊆ Xi.

It is helpful to think about the sequences in set V as paths in
an infinite collection of infinite trees, see Figure 9, whose
nodes are maximal consistent sets of formulas and whose
edges are labeled by tuples (a, b, p, ψ).

By hd(v) we mean the last element of any non-empty se-
quence v. In particular, hd(v) = Xn if

v = ⟨X0, (a1, b1, p1, ψ1), X1, . . . , (an, bn, pn, ψn), Xn⟩.
By α ::β we mean the concatenation of sequences α and β.

In particular, if α is sequence

⟨X0, (a1, b1, p1, ψ1), X1, . . . , (an−1, bn−1, pn−1, ψn−1), Xn−1⟩,
then α :: ⟨(an, bn, pn, ψn), Xn⟩ is sequence

⟨X0, (a1, b1, p1, ψ1), X1, . . . , (an, bn, pn, ψn), Xn⟩.
We are now ready to define the set of of transitions of the

canonical model.

X0

X3

X4

X7

(a7, b7, p7, "7)

X1

X5

X6

X2

(a1, b1, p1, "1) (a2, b2, p2, "2) (a3, b3, p3, "3)

(a4, b4, p4, "4) (a5, b5, p5, "5)

(a6, b6, p6, "6)

... ...

... ...

...

Figure 9: A fragment of a tree of sequences

Definition 5

T = {(v, b, a, p, v ::⟨(a, b, p, ψ), X⟩)|v ::⟨(a, b, p, ψ), X⟩ ∈ V }.

For example, in the setting depicted in Figure 9, set T con-
tains tuples

(⟨X0⟩, b1, a1, p1, ⟨X0, (a1, b1, p1, ψ1), X1⟩),

(⟨X0⟩, b2, a2, p2, ⟨X0, (a2, b2, p2, ψ2), X2⟩),
(⟨X0⟩, b3, a3, p3, ⟨X0, (a3, b3, p3, ψ3), X3⟩),

(⟨X0, (a3, b3, p3, ψ3), X3⟩, b4, a4, p4,
⟨X0, (a3, b3, p3, ψ3), X3, (a4, b4, p4, ψ4), X4⟩),

(⟨X0, (a3, b3, p3, ψ3), X3⟩, b5, a5, p5,
⟨X0, (a3, b3, p3, ψ3), X3, (a5, b5, p5, ψ5), X5⟩),

(⟨X0, (a3, b3, p3, ψ3), X3, (a4, b4, p4, ψ4), X4⟩,
b6, a6, p6,

⟨X0, (a3, b3, p3, ψ3), X3, (a4, b4, p4, ψ4), X4,

(a6, b6, p6, ψ6), X6⟩),

(⟨X0, (a3, b3, p3, ψ3), X3, (a4, b4, p4, ψ4), X4⟩,
b7, a7, p7,

⟨X0, (a3, b3, p3, ψ3), X3, (a4, b4, p4, ψ4), X4,

(a7, b7, p7, ψ7), X7⟩),
. . .

Definition 6 v ⊩ P if P ∈ hd(v).

This concludes the definition of the model ⟨V, T,⊩⟩. The
next two lemmas are auxiliary statements that are used in the
proof of the core Lemma 4.

Lemma 2 For any consistent set X, if ¬[c]qdσ ∈ X , then set
{¬σ} ∪ {τ | [c]qdτ ∈ X} is consistent.

Proof. Suppose the opposite. Thus, τ1, . . . , τn ⊢ σ for some
[c]qdτ1, . . . , [c]

q
dτn ∈ X . Hence, by the deduction theorem in

the propositional logic, ⊢ τ1 → (τ2 → . . . (τn → σ) . . . ).
Then, ⊢ [c]qd(τ1 → (τ2 → . . . (τn → σ) . . . )) by Necessita-
tion rule. Thus, ⊢ [c]qdτ1 → [c]qd(τ2 → . . . (τn → σ) . . . ))
by Distributivity axiom and Modus Ponens inference rule.



Hence, X ⊢ [c]qd(τ2 → . . . (τn → σ) . . . )) due to the
assumption [c]qdτ1 ∈ X . Then, X ⊢ [c]qdσ by repeating
the last two steps n − 1 times. The last statement implies
inconsistency of the setX due to the assumption ¬[c]qdσ ∈ X
of the lemma. ⊠

Lemma 3 For any sequence (v0, b1, c, p1, v1),
(v1, b2, c, p2, v2), . . . , (vn−1, bn, c, pn, vn) ∈ T , any
d ≥ 0, and any q ≥ −d such that

1. n ≥ 0,
2.

∑n
i=1 pi ≥ q,

3. d+
∑k−1

i=1 pi ≥ bk for each 1 ≤ k ≤ n,
if [c]qdσ ∈ hd(v0), then σ ∈ hd(vn).

Proof. We prove this statement by induction on n. If n = 0,
then condition 2 of the lemma implies that 0 ≥ q. Thus,
q ≤ 0. Hence ⊢ [c]qdσ → σ by Reflexivity axiom. Then,
assumption [c]qdσ ∈ hd(v0) implies hd(v0) ⊢ σ by Modus
Ponens inference rule. Therefore, σ ∈ hd(v0) due to maxi-
mality of the set hd(v0).

Suppose now that n > 0. Note that d+ p1 + · · ·+ pn−1 ≥
bn ≥ 0 by the third assumption of the lemma and Defini-
tion 1. Hence, assumption [c]qdσ ∈ hd(v0) by Transitivity ax-
iom implies that hd(v0) ⊢ [c]

p1+···+pn−1

d [c]
q−p1−···−pn−1

d+p1+···+pn−1
σ.

Thus, [c]p1+···+pn−1

d [c]
q−p1−···−pn−1

d+p1+···+pn−1
σ ∈ hd(v0) due to max-

imality of the set hd(v0). Then, by the induction hypothesis,
[c]

q−p1−···−pn−1

d+p1+···+pn−1
σ ∈ hd(vn−1). Condition 2 of the lemma

implies q − p1 − · · · − pn−1 ≤ pn. Thus, by Lemma 1,

hd(vn−1) ⊢ [c]pn

d+p1+···+pn−1
σ.

Condition 3 of the lemma implies that d+p1+ · · ·+pn ≥ bn.
Hence, by Monotonicity axiom, hd(vn−1) ⊢ [c]pn

bn
σ. Thus,

[c]pn

bn
σ ∈ hd(vn−1) due to the maximality of the set

hd(vn−1). Therefore, σ ∈ hd(vn) by condition 5 of Defini-
tion 4. ⊠

Lemma 4 v ⊩ φ iff φ ∈ hd(v).

Proof. We prove this lemma by induction on structural com-
plexity of formula φ. If formula φ is a propositional variable,
then the required follows from Definition 6. The cases when
formula φ is a negation or an implication follow from Defini-
tion 3 and the assumption of maximality and consistency of
the set hd(v) in the standard way. Assume now that formula
φ has the form [a]pbψ.
(⇒) Suppose that [a]pbψ /∈ hd(v). Thus, ¬[a]pbψ ∈ hd(v)
due to the maximality of the set hd(v). Hence, by Lemma 2,
set {¬ψ} ∪ {χ | [a]pbχ ∈ hd(v)} is consistent. Let Y
be any maximal consistent extension of this set. Thus, v ::
⟨(a, b, p, ψ), Y ⟩ ∈ S by Definition 4. Note that ¬ψ ∈ Y .
Hence, ψ /∈ Y due to the consistency of set Y . Thus,

v ::⟨(a, b, p, ψ), Y ⟩ ⊮ ψ

by the induction hypothesis. Finally, note that by Defini-
tion 5,

(v, b, a, p, v ::⟨(a, b, p, ψ), Y ⟩) ∈ T.

Therefore, v ⊮ [a]pbψ by Definition 3.
(⇐) Let [a]pbψ ∈ hd(v). By Definition 3, it suffices to show
that vn ⊩ ψ for any sequence of tuples (v0, b1, c, p1, v1),
(v1, b2, c, p2, v2), . . . , (vn−1, bn, c, pn, vn) ∈ T such that

1. n ≥ 0,

2. v0 = v,

3.
∑n

i=1 pi ≥ q,

4. d+
∑k−1

i=1 pi ≥ bk for each 1 ≤ k ≤ n.

Indeed, ψ ∈ hd(vn) by Lemma 3. Therefore, vn ⊩ ψ by the
induction hypothesis. ⊠
Note that to prove part (⇒) above we need to construct a
state v′ reachable from state v such that φ /∈ hd(v′). Al-
though Definition 3 only requires that such state v′ is reach-
able through a sequence of transitions in our case state v′ =
v ::⟨(a, b, p, ψ), Y ⟩ is reachable through a single move.

We are now ready to state and to prove the main result of
this paper – a completeness theorem for our logical system.

Theorem 2 (completeness) Let φ ∈ Φ. If v ⊩ φ for every
state v ∈ V of every model ⟨V, T,⊩⟩, then ⊢ φ.

Proof. Suppose that ⊬ φ. Let X0 be a maximal consistent
subset of Φ containing formula ¬φ. Let ⟨V, T,⊩⟩ be the
defined above canonical model and v be the single-element
sequence ⟨X0⟩. Thus, ¬φ ∈ X0 = hd(v). Hence, φ /∈ hd(v)
due to X being a consistent set. Therefore, v ⊮ φ by
Lemma 4. ⊠

6 Conclusion
In this paper we proposed a logical system for reasoning
about budget-constrained transition systems. Our contribu-
tion here is twofold: on one hand we have proposed the no-
tion of a budget-constrained transition system and a novel
modal language that incorporates two types of budget con-
straints: profit constraint and budget constraint. On the other
hand, we have described a sound and complete logical system
that captures all universal principles expressible through this
modality. The logical system, through its Transitivity axiom,
captures a dependency between the two constraints.

Although throughout the paper we have assumed that the
budget is constrained by a non-negative real number, we be-
lieve that our work could be modified to allow for infinite
value of the budget subscript in the modality. In this extended
language modality w ⊩ [a]p∞φ would mean that statement φ
is true at any state reachable from state w by agent a with
profit p and no restriction on the budget. In case when value
of b is ∞, we can also allow the value of superscript p to be
−∞ without violating our constraint −b ≤ p.

Another possible extension of this work is to consider
modality [C]pb , where set C ⊆ A represents a coalition of
agents working together. This extension would require a sig-
nificant modification not only to the axiomatic system and
the proof of its completeness, but also to the definition of
the budget-constrained transition system. Such modifications
could follow the approach of [Alechina et al., 2011].
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