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Abstract 

The MH-2B hole was one of three holes completed as a part of HOTSPOT: The 
Continental Scientific Drilling Project.  MH-2B was drilled to a depth of 1821m on 
the Mountain Home Air Force Base southeast of Boise, Idaho to evaluate the 
potential for development for geothermal energy on the base. Water under artesian 
pressure was encountered at a depth of 1745 m. We analyzed pieces of the core to 
study clay mineralization with depth. We took 22 samples from the bottom half of 
the core, focusing on around 1790m, where preliminary analysis indicated the 
presence of corrensite (R1 ordered smectite/chlorite). X-ray diffraction (XRD) of 
these powders showed a transition from smectite at 762m to corrensite at 1790m 
and back to smectite at 1807m. More detailed XRD analysis with ethylene-glycol 
solvated samples confirmed the findings of the powder samples (namely a transition 
from smectite -> corrensite -> smectite). We modeled smectite and corrensite 
crystallinity with depth and found an increase in the defect free distance of both 
minerals. Samples around 1790m showed the presence of smectite, corrensite, and 
possibly chlorite (or serpentine). We interpret this result to support a discontinuous 
(stepwise) model for the smectite-chlorite transition. The presence of artesian fluid 
in this zone is evidence for the importance of high fluid/rock ratios in the smectite-
chlorite transition, and the association of high fluid/rock ratios with a discontinuous 
transition model.
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Introduction 

 

Geologic Setting 

The Snake River volcanic province (SRP) in central Idaho was created when 

North America moved over a mantle hotspot (which is now beneath Yellowstone) in 

the late Cenozoic (Aly et al. 2009). The plain spans roughly 500 km through 

southern Idaho (Figure 1) and is covered by basalt and interbedded continental 

sediments (Breckenridge et al. 2012). The region has some of the highest heat flow 

in North America and is one of the United States’ most underdeveloped geothermal 

resources (Shervais et al. 2011). Thermal gradients are elevated throughout the 

region. They are highest along the margins of the Snake River plain and lowest along 

the axis, where the Snake River aquifer suppresses temperatures (Shervais et al. 

Figure 1 Shaded relief-topographic map of Snake River Plain derived from NASA 10m DEM data and contoured at 
30m intervals. Red stars = new drill sites of this project; open circles = legacy drill sites. (Shervais et al. 2011). 
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2011).  

 Since September 2010, Project Hotspot, an international group investigating 

the region, has studied the thermal system and its relationship to the path of the 

active Yellowstone hotspot. One of 

the project’s goals is to 

understand the compositional 

relationship between the 

Yellowstone Plateau – which is 

composed of rhyolite and 

ignimbrites – and the Snake River 

Plain – which is underlain by 

basalt and plume-derived rhyolite. 

The project has drilled three 

intermediate depth wells in the 

region as part of its process.  

The third and most recent 

well, MH-2, was drilled primarily 

to examine the geothermal 

potential of the Mountain Home 

Air Force Base (MHAFB). 

Geothermal energy for the region 

Figure 2 Lithologic and temperature logs of the MH-2 
core. Our sample locations are represented by orange 
dots. There are 9 samples within the final 50m of the 
core. 
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has at present been limited to only one commercial plant: the Raft River Geothermal 

Plant approximately 150 miles SE of the Mountain Home site. The Snake River Plain 

also currently has numerous small-scale direct-use applications including space 

heating and aquaculture (Shervais et al. 2011). Despite this underutilization, the 

large scale power generation potential is high. The U.S. Air Force hopes to use 

geothermal power as a safe and secure energy source for the base. MH-1, the first 

exploratory well was drilled on the base in 1986 and then plugged. Drilling for the 

current well, MH-2, began in July 2011 and was finished in January 2012. When 

operations were completed the well went to a total depth of 1821m (Breckenridge 

et al. 2012). The general lithology of the well (starting at the surface) is as follows: 

≈210 m of basalt, ≈610 m of lake sediments, and ≈915 m of increasingly altered 

basalt (Figure 2). Temperatures at 1700m were measured at 130°C; at the bottom of 

the well (where temperatures were not measured) they were estimated to be 

roughly 140°C (Breckenridge et al. 2012). Drillers encountered a fracture system 

with water under artesian pressure at a depth of 1745 m. The water was analyzed 

and shown to be sulfate-rich and Cl-poor with low pH (≈5.6-5.7) (Breckenridge et al. 

2012). These water characteristics suggest steam-heated volcanic waters 

equilibrated with altered basalt (Breckenridge et al. 2012). Current studies, 

including this paper, hope to aid the base in characterization of porosity and 

permeability of the rocks and to contribute to a more thorough understanding of the 

minerals formed by hydrothermal alteration. It remains unknown whether 

permeability, volume of water, and available heat are sufficient for electrical 

generation (Breckenridge et al. 2012).  
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Clay Mineralogy 

Clay minerals are layered aluminum silicates by definition smaller than 2 μm 

equivalent spherical diameter (e.s.d.). They are the most abundant minerals on the 

surface of the earth (Moore and Reynolds, 1). The structural layers are made of two 

different sheets, one with oxygen in tetrahedral coordination around Si or Al, the 

other with O and OH in octahedral coordination around Mg2+ and Fe2+, or Al3+.   The 

tetrahedra form hexagonal sheets designated by “T”.  Octahedral sheets, designated 

by “O”, may be either dioctahedral or trioctahedral depending on the number of 

divalent or trivalent cations necessary to achieve electrical neutrality:  three 2+ 

cations (trioctahedral) or two 3+ cations (dioctahedral). Clay mineral structures 

Figure 3 Diagrams for smectite, chlorite, and corrensite. All three clays are made up of TOT layer. 
The difference lies in the nature of the interlayer. (Figure modified from Nelson 2011) 
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involve stacks of either 2 sheets (TO) or 3 sheets (TOT) to create the basic layer 

(Figure 3). These sheets are held together by relatively weak Van der Waals bonds, 

interlayer cations (micas), hydrated interlayer cations (smectite), or other 

octahedral layers (chlorite).  

Preliminary research has indicated the presence of three clay minerals 

within the MH-2 core: smectite, chlorite, and corrensite. Smectites are a group of 

dioctahedral and trioctahedral clay minerals that have expandable crystallographic 

structures (Moore and Reynolds, 136). Due to a small interlayer charge (~0.33-

/layer), water or an organic compound, such ethylene glycol, can enter and expand 

the interlayer of a crystal. In volcanic and volcani-clastic systems, the mineral has 

been interpreted to form from the alteration of silica rich volcanic glass (Moore and 

Reynolds, 138). When expanded with ethylene glycol, the spacing between two 

smectite layers (d001) is a uniform 16.9 Å.  

Chlorite appears to form from metamorphosed smectite. It is also arranged in 

trioctahedral TOT layers, but the interlayer is made up of another O sheet. The d001 

value for chlorite is 14.2 Å. Corrensite is a mixed-layer clay mineral composed of an 

R1 ordered (one-to-one) mixture of smectite and chlorite. The d001 for glycolated 

corrensite is about 31 Å (16.9 Å for smectite + 14.2 Å for chlorite). These three 

minerals all have TOT similar layers and differ mostly by the nature of their 

interlayer. Because the TOT layer is basically the same for all three, only an 

interlayer change is needed to transition from one to another. 
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Figure 4 Diffraction between rows of atoms. The d value is the 
spacing between diffracting domains. (Moore and Reynolds 68). 

 

X-ray Diffraction 

 X-ray diffraction (XRD) analysis consists of measuring the reflection 

(diffraction) of an X-ray beam off the crystal structure of a mineral. As emitted 

waves reflect off different atomic planes of the crystal they undergo either 

constructive or destructive 

interference. In the case of 

constructive interference – 

when wavelengths are in 

phase – X-rays are reflected 

back from the mineral and 

measured by a detector as 

individual peaks. By 

measuring the angle at which constructive interference occurs and the wavelength 

of the X-ray, the spacing between reflecting planes (the d value) can be calculated 

(Figure 4). The spacing of these planes correlates to a distinct mineral structure. The 

positions and relative intensities X-ray peaks are used to identify an unknown 

mineral.  

 Because of their structure, clay minerals behave uniquely under XRD. Clay 

minerals are made up of layers that extend in the horizontal plane but have a limited 

number of layers stacked on top of each other, creating relatively thin diffracting 
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domains and producing broader peaks than those of more crystalline minerals. The 

width of individual peaks can be used to estimate the average number of unit cells 

stacked together without a defect. In addition, because clays are structured in 

layers, constructive interference can occur between 2 layers, and also between two 

or more layers (these are known as basal reflections or the 00l series). Diffraction 

between multiple layers of parallel sheets creates rationally spaced peaks useful in 

clay identification. Because smectite, chlorite, and corrensite are TOT clays, stacking 

differences and the nature of interlayering are what differentiate the three minerals. 

XRD displays these differences and so makes it possible to distinguish between the 

three clay types. 

 

The Smectite-Chlorite Transition 

The smectite to chlorite transition is a poorly understood facet of low-grade 

metamorphism. The details of this conversion, particularly the nature of 

intermediate stages are the subject of debate in scientific literature. It is uncertain 

whether the transition is continuous, with even growth of randomly interstratified 

(R0) chlorite-smectite (C-S), or whether the transition is discontinuous (stepwise), 

with no intermediates between smectite, corrensite, and chlorite. A continuous 

conversion includes R0 C-S, while a discontinuous process has only regularly 

ordered C-S also known as corrensite.  
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Schiffman and Fridleifsson (1991) looked at clays within a basaltic core from 

Iceland. They found smectite at temperatures below 180°C, randomly interstratified 

chlorite and smectite between 200°C and 240°C, regularly (R1) and randomly 

interstratified chlorite-smectite between 245°C and 265°C, and discrete chlorite 

above 270°C. Bettison-Varga and Mackinnon (1997) looked at phyllosilicates in a 

hydrothermally altered basalt from California with transmission electron 

microscopy (TEM). They found large crystals of randomly interstratified chlorite-

smectite and suggest that the process is continuous with dissolution and re-

precipitation as key mechanisms in formation. Murakami et al. (1999) on the other 

hand, found with TEM that the transition occurs stepwise from smectite to 

corrensite and from corrensite to chlorite. They also found dissolution and 

precipitation to be the dominant mechanisms. This discontinuous model, although 

newer, is supported by results of laboratory experiments (Roberson et al. 1999). 

Robinson and Zamora (1999), found no corrensite in their study of exploratory 

wells from the Chipilapa geothermal system in El Salvador, but they too determined 

the smectite to chlorite transition to be stepwise, with no randomly interstratified 

chlorite-smectite. 

The difference between the continuous and the discontinuous reactions 

might be controlled by fluid/rock ratios. Areas with high permeability and high 

fluid/rock ratios have been shown to be associated with the discontinuous model 

while continuous sequences are associated with low ratios (Dekayir et al. 2005, 

Schmidt and Robinson 1997, Shau and Pecor 1992). The presence of discrete 
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minerals, with no random mixed-layer C-S has also been shown to correspond to 

equilibrated systems (Shau and Pecor 1992).  Threshold temperatures for reactions 

of either model are approximately 150°C (Schmidt and Robinson 1997).  

This study used X-ray Diffraction techniques to look in detail at the clay 

mineralogy of the MH-2 core, and to investigate the nature and behavior of the clay 

minerals with changes in depth. The crystallization changes within individual 

minerals (smectite and corrensite) with depth are examined as well as the nature of 

the smectite-chlorite transition. We hope to contribute to the current debate 

regarding the nature of the transition from smectite to chlorite. 
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Methods 

 

Twenty-three samples from between 750m and 1820m (see Figure 2) depth 

were collected from the MH-2 core. Ten samples were taken from 1750m to 1820m 

because of the presence of geothermal or hydrothermal fluid, and because 

preliminary results indicated the presence of corrensite. The rest of the core was 

evenly 

sampled 

approximate

ly every 

100m. We 

focused on 

and sampled 

only basaltic 

sections of 

the core. 

With depth 

the core changes from sandy tan sediments to greenish grey basalts. It is mostly 

fine-grained but at deeper intervals it shows some visible crystals and alterations 

(Breckenridge et al. 2012). Figure 5 shows an example of the core in the corrensite 

bearing range (1763m). 

 

Figure 5 The basaltic section of the core at 1763m, the heart of the section most 
intensely studied. Photo credit: Project Hotspot 
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 All 23 samples were crushed and ground in a Cole Parmer model 4301 

analytic mill and then were sieved to a <250-µm grain size using an ASTM sieve. 

Well slides were filled with these random powders for initial XRD analysis. 

X-ray diffraction analyses were performed on these samples at Vassar 

College using a Bruker D2 diffractometer at 30kV and 10mA with a 0.6° incident 

beam slit size. Samples were routinely run with an 0.1 step size and a count time 

ranging from 0.4 to 1.0 sec/step from 2° to 35° 2Ө.  

XRD patterns were analyzed with Bruker DIFFRAC.EVA V2.1. This software was 

used to overlay different patterns and to calculate XRD characteristics (including 

position, intensity, and full width at half maximum (FWHM) of peaks). 

From the 23 random powder mounts, we chose ten representative samples for 

more detailed study.  Oriented mounts of the less than 2µm e.s.d. clay fractions were 

prepared by ultrasonic treatment of the powder suspended in water with a Branson 

Sonifier 250 for approximately one minute. The resulting suspension was 

centrifuged in a Beckman Model TJ-6 for three minutes at 750 rpm to settle out >2 

µm e.s.d. fractions. This suspension was vacuum filtered through a 0.45-µm milipore 

filter. We then attempted to transfer the clay to a slide by drying the filter on a 3.5 

cm glass slide. If this proved unsuccessful we re-sonified the clay and spread it 

evenly on a glass slide by pipetting. 

Air-dried samples were analyzed with the same parameters as above. After this, 

each sample was exposed to ethylene glycol vapor at 60°C for at least 24 hours. The 

glycolated samples were analyzed with the same parameters. 
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The original glycolated clays showed patterns with peak values that were 

slightly off. The corrensite peak for the 1791m sample, for example, had a d value of 

≈29.5 Å (≈3˚ 2θ) whereas the corrensite peak is normally at ≈31 Å. This was solved 

by calcium saturating the samples. Figure 6 shows the difference between a 

saturated and unsaturated sample. Because the calcium-saturated samples have 

correct peak placements, all samples were Ca-saturated.  

Calcium saturation was done by exposing the re-sonified <2-µm to ≈50mL 0.1M 

calcium chloride solution for ≈two minutes. The samples were rinsed with ≈150mL 

of water and spread evenly on a glass slide with pipette. The calcium-saturated 

samples were analyzed using XRD (same as above) as both air-dried and glycolated 

samples. 

Modeling of XRD patterns was done with the NEWMOD modeling software 

(versions one and two). This software was used to estimate relative compositions of 

clay types, the nature of interstratification (R0 or R1), and to estimate mean defect 

free distance of crystals. We followed an example set by Beaufort and Meunier 

Figure 6 The effect of calcium saturation on peak placement. The saturated samples had peak 
locations  in expected locations while unsaturated samples were at a higher angle than expected 
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(1994) and used 0.38 as a value for Fe atoms because we were unable to measure 

this value for ourselves. 
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Results 

 

Randomly Oriented Powder Mounts 

 Figure 7a shows four representative diffraction patterns for the random 

powder mounts, which were used to determine which samples should be 

investigated in more detail. The results show a trend from smectite to corrensite (at 

about 1790m) and back to smectite. The numerous sharp peaks are from plagioclase 

feldspars and zeolites such as laumontite. Figure 7b shows 4 representative samples 

plotted in depth order on the same graph. Patterns around 1750m are clearly 

distinct from the other portions of the core. 

 

 
Smectite Smectite 

Smectite Corrensite 1790m 

762m 1270m 

1807m 

Figure 7a Four Representative diffraction patterns for random powder mounts. 762m, 1270m, and 
1807, all indicate smectite. 1790m is clearly different and the pattern suggests corrensite. 
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Glycolated Filter Peels 

 Of the eight calcium-saturated and glycolated samples, three (762m, 1555m, 

and 1807m) were pure smectite. Figure 8 shows these samples zoomed in on the 

d001 peak (≈17Å). It is clear that the peak sharpness increases as depth increases. 

Modeled changes of Full Width at Half Maximum (FWHM or β) show that the mean 

defect free distance (δ) of the smectite increases with depth (Table 1). The general 

effects of a changing δ value (as modeled in NEWMOD) are demonstrated in Figure 

9. 

Figure 7b Four powder patterns arranged in order of depth. The third sample has a unique 
peak at ≈10°. This data helped us pick samples for more detailed study. 

Smectite

Depth (m) Measured FWHM (β) Modeled δ Modeled FWHM (β)

762 1.26 1.5 1.26

1555 0.281 7 0.28

1807 0.241 10 0.24

Table 1 Modeled and measured FWHM (β) and defect-free distance (δ). With depth 
the measured value of smectite β increases. The model of this increase has a 
corresponding  increase for δ values. 

1790m 

1750m 

1490m 

850m 
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Figure 8 Changing width of the (001) smectite peak. With depth the peaks get less broad 

Figure 9 NEWMOD modeling patterns for increased defect-free distance (δ). With increases in δ peaks get 
sharper and taller, similar to the measured patterns in figure 8. 
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 Diffraction patterns for all eight samples are shown in Figure 10. Clay 

minerals in the core transition from pure smectite to a corrensite-bearing zone at 

≈1752m and then back to smectite at ≈1807m. This matches the powder mount 

results but also shows the corrensite zone to be more complicated than indicated by 

powder analysis. XRD results of these samples are summarized in Tables 2a&b. 

Samples from1787m and 1793m have both corrensite and chlorite peaks. Samples 

from 1752m, 1771m, and 1791m appear to have smectite (d001 d005, and d006 peaks), 

corrensite (d001 d002, d003, d004, and d005 peaks), and chlorite (the d002 peak). The 

pattern for 1752m (figure 11) shows representative mineral peaks. The chlorite 

peak could be serpentine (which also generates a peak at 7.1Å) but the asymmetry 

on the high-angle side of the corrensite d002 peaks (figure 11) suggests that a weak 

chlorite d001 peak may be combined with the corrensite peak.  

 We calculated the coefficient of variation (CV) for the d00l peak series’ for 

both smectite and corrensite (table 2b). There were not enough measurable peaks 

Figure 10 The diffraction patterns for all 8 closely studied samples. The transition from smectite to a 
corrensite-bearing zone to another smectite zone is clearly seen. 

Figure 
51 The 
XRD 
diffracti
on 
pattern 
for 
1752m. 
Individu
al peaks 
are 
labeled 
with the 
clay that 
they 
correspo
nd to. 
The 
Chlorite 
peak 
could 
also be 
serpenti
ne, but it 
is 
assumed 
to be 
chlorite 
for the 
purpose
s of this 
figure. 
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to draw strong conclusions from this data, but corrensite peaks generally had a 

much higher CV value than smectite peaks. The fact that corrensite peaks - which 

occur exclusively in the altered zone - are less rational than smectite could be 

evidence for the presence of random interstratification of chlorite-smectite as well 

as corrensite. The presence of randomly interstratified chlorite-smectite would 

create high variation among the corrensite peaks. Further research should clarify 

the rationality of peaks to explore this possibility 

   

Depth (m) Distinct Peaks (d value):

c d001 s d001 c d002 c d003 s d002 c d004 ch d002 c d005 s d005 s d006

762 16.926 8.409 3.317

1650 16.32 9.591 8.116 7.314

1752 30.644 16.561 14.794 9.385 7.467 7.118 6.363 3.31 2.707

1771 29.404 15.912 14.462 9.412 7.4 7.122 6.324 2.698

1787 31.333 15.152 9.937 7.588 7.185 6.369 2.705

1791 30.5 16.414 14.824 9.449 7.475 7.161 6.363 2.706

1793 31.371 15.174 7.601 7.106 6.358 2.704

1807 16.683 8.255 3.303

Table 2a The measurable peaks for all 8 closely studied samples. Peak locations were calculated with DIFFRAC.EVA V2.1 
c = corrensite s = smectite ch = chlorite 

Table 2b Possible clay minerals present in each sample. The rationality 
(coefficient of variation) was calculated for smectite and corrensite peaks. 

Depth (m) Smectite? CV of peaks Corrensite? CV of peaks Possible Chlorite peak?

762 Yes 1.0388 - - -

1650 Yes 0.3823 Yes Only 1 peak Yes

1752 Yes 0.047 Yes 4.5 Yes

1771 Yes 1.215 Yes 4.288 Yes

1787 - - Yes 2.478 Yes

1791 Yes 0.771 Yes 4.211 Yes

1793 - - Yes 2.313 Yes

1807 Yes 0.594 - - -



21 

 

 
 

 

Cor

ren

site 

(d0

01) 

Sm

ecti

te 

(d0

01) 

Cor

ren

site 

(d0

02) 

Cor

ren

site 

(d0

03) 

Cor

ren

site 

(d0

04) 

Chl

orit

e 

(d0

02) 

Cor

ren

site 

(d0

05) 



22 

 

Discussion and Conclusions 

 

Characterization of Core 

 XRD analysis of the core shows smectite to be the dominant clay mineral 

throughout the core. With increases in depth and temperature smectites appear to 

become more crystalline. The measured FWHM for the d001 peak decreases from 

1.26 at 762m to .281 at 1555m to .241 at 1807m. Modeled defect-free distance 

increases from 1.5 to 7 to 10 in the same three samples. Corrensite crystallinity also 

seems to increase with depth. The measured FWHM for the d001 peak decreases 

from 0.633 at 1650m to .497 at 1787m, to .426 at 1807m.  The corresponding 

modeled defect-free distance increases from 3.2 to 4 to 5.4 respectively. The 

increasing defect free distance for both crystals suggests, as we might expect, that 

the clays become more perfectly formed as depth and temperature increases. 

Smectite, dominant at both the top and bottom of the basalt zone of the core, 

correlates with increases in pressure and temperature, suggesting that these are the 

most important variables. 

Because of its confinement to a relatively thin zone, other variables must have been 

at work in the sections containing corrensite. Our data agree with the work of others 

(Dekayir et al. 2005, Schmidt and Robinson 1997, Shau and Pecor 1992) in that the 

high fluid/rock ratio beginning around 1745m seems to have made metamorphism 

possible. Fluid seems to be the variable that explains such rapid compositional 

changes over such limited depth and temperature changes.  
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 The results of XRD analysis from 1752m – 1793 are evidence for the 

simultaneous and discrete presence of smectite, corrensite, and possibly chlorite. 

Samples from this range have peaks indicative of all three minerals. The strongest 

evidence for corrensite is the superlattice peak at ≈31 Å, which is present in all 

samples of this range. Three of the five (1752, 1771, 1791) also have two peaks at 

around 6° 2 Ө that are interpreted to correspond to the smectite d001 and corrensite 

d002 peaks.  While the samples at 1787m and 1793m have only one peak in this 

region, the peak for both is located at around 15° 2theta, or directly between the 

positions of smectite d001 and corrensite d002 peaks. It is possible than that these 

samples have both peaks, but that they were not resolved by our scans. The co-

existence of all three clay minerals – but particularly of the smectite and corrensite 

peaks (see figure 11) – in this range is strong XRD evidence for the existence of all 

three minerals as discrete phases. We found no conclusive evidence for randomly 

interstratified chlorite-smectite. This data fits well with other recent 

characterizations of smectite – chlorite transitions. The correlation between high 

fluid/rock ratios and a discontinuous transition as described by Shau and Pecor 

(1992) is reflected in our data. There is also evidence for the other side of this model 

– that low fluid/rock ratios are associated with a continuous sequence – in the 

sample from 1650m. This sample, which is above the zone with water, has the 

smectite (d001 d002) and the chlorite (d002) peaks, but no corrensite superlattice 

peak, and only a very weak corrensite d003 peak. This could be evidence for 

randomly interstratified C-S in this sample.  
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 The temperature of the artesian well water in the alteration zone (140°C) fits 

well with the findings of Schmidt and Robinson (1997), who found that corrensite 

and chlorite will not form below 150°C. The fact that core temperatures are slightly 

colder than their suggested threshold temperature could indicate that water in the 

MH-2 core is cooling down. The two values are so close though that this difference 

could also be the result of measurement error, or of the cooling of well water during 

drilling and extraction, or of some other drilling-related process. The fact that 

alteration occurs in this zone where measured temperatures are so close to those 

proposed by Schmidt and Robinson is further support for their model. 

 

Conclusions  

 This investigation of the MH-2 Core had two major goals:  to characterize the 

composition of what was an unknown basaltic core in an effort to determine 

geothermal feasibility, and to contribute to an ongoing debate regarding the 

transition from smectite to corrensite to chlorite. The project then had both a 

practical and intrinsic value as a contribution to a geothermal project and scientific 

question respectively. 

We have found evidence for the dominance of smectite throughout the core, 

but also a zone with more complicated mineralogy. This zone, where fluid/rock 

ratios are high, appears to have corrensite and chlorite as well as smectite. If our 

data is in line with the model proposed by Shau and Pecor (1992), which it appears 

to be, than the altered zone is likely in equilibrium with the water and more 

mineralization is not occurring.  



25 

 

Much work remains to be done to clarify and confirm our findings. XRD, 

while useful for initial characterization, has several limitations. Because samples are 

crushed and analyzed only for minerals present, we could be missing entirely 

processes whereby different minerals are altered to different clays. The three clay 

minerals could be growing in separate parts of the same sample but this distinction 

does not appear with XRD. Petrographic analysis will help describe textures of the 

core and could show where and how clay alterations are occurring. Microprobe 

analysis should be performed to determine mineral compositions. This will help us 

to characterize the interlayers better and will provide further evidence for or 

against randomly interstratified C-S. Future work should also include fluid flow and 

composition analysis to investigate the particulars of the hydrothermal alteration. 

Fracture pattern analysis will help in overall characterization the core, and will 

indicate where hydrothermal alterations are possible.  
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