
Vassar College
Digital Window @ Vassar

Faculty Research and Reports

Winter 2-26-2018

Information Flow under Budget Constraints
Pavel Naumov
pnaumov@vassar.edu

Jia Tao
Lafayette College, taoj@lafayette.edu

Follow this and additional works at: https://digitalwindow.vassar.edu/faculty_research_reports

Part of the Logic and Foundations Commons, Logic and Foundations of Mathematics
Commons, and the Theory and Algorithms Commons

This Article is brought to you for free and open access by Digital Window @ Vassar. It has been accepted for inclusion in Faculty Research and Reports
by an authorized administrator of Digital Window @ Vassar. For more information, please contact library_thesis@vassar.edu.

Citation Information
Naumov, Pavel and Tao, Jia, "Information Flow under Budget Constraints" (2018). Faculty Research and Reports. 111.
https://digitalwindow.vassar.edu/faculty_research_reports/111

https://digitalwindow.vassar.edu?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/532?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/532?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalwindow.vassar.edu/faculty_research_reports/111?utm_source=digitalwindow.vassar.edu%2Ffaculty_research_reports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library_thesis@vassar.edu

39

Information Flow under Budget Constraints

Pavel Naumov, Vassar College
Jia Tao, Lafayette College

Although first proposed in the database theory as properties of functional dependencies between attributes,
Armstrong’s axioms capture general principles of information flow by describing properties of dependencies
between sets of pieces of information. This article generalizes Armstrong’s axioms to a setting in which there
is a cost associated with information. The proposed logical system captures general principles of dependen-
cies between pieces of information constrained by a given budget.

CCS Concepts: rTheory of computation→ Logic; Proof theory;

General Terms: Theory, Security, Economics

Additional Key Words and Phrases: Armstrong’s axioms, axiomatization, completeness, budget constraints

ACM Reference Format:
Pavel Naumov and Jia Tao, 2016. Information Flow under Budget Constraints. ACM Trans. Comput. Logic
9, 4, Article 39 (March 2010), 27 pages.
DOI: 0000001.0000001

1. INTRODUCTION
1.1. Functional Dependency
Armstrong [1974] introduced a system of three axioms describing the properties of
functional dependencies between sets of attributes in a database. The applicability of
these axioms goes far beyond the domain of databases. They capture the properties
of functional dependency between any two sets of pieces of information. To describe
this setting informally, one can think of an agent that has knowledge of some of the
pieces of information and is interested in uncovering some other pieces. For example,
knowing a cyphertext c and the decryption key k, one can determine the plain text
message m. We write this as c, k �m. Yet, one cannot determine the original message
from the cyphertext alone without the encryption key, and thus, ¬(c � m). Keeping
the intended epistemic interpretation in mind, we refer to the pieces of information as
secrets.

The property c, k�m is valid when secrets c, k, and m are a cyphertext, a decryption
key, and the corresponding plain text message. However, it may not be valid under
some other interpretation of these secrets. Armstrong’s axioms capture the most gen-
eral properties of functional dependencies that are valid in all settings. These axioms
are:

(A1) Reflexivity: A�B, if B ⊆ A,
(A2) Augmentation: A�B → A,C �B,C,
(A3) Transitivity: A�B → (B � C → A� C),

Author’s addresses: P. Naumov, Computer Science Department, Vassar College, Poughkeepsie, NY 12604,
email:pnaumov@vassar.edu; Jia Tao, Computer Science Department, Lafayette College, Easton, PA 18042,
email:taoj@lafayette.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2010 Copyright held by the owner/author(s). 1529-3785/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 P. Naumov and J. Tao

where A,B denotes the union of sets of secrets A and B, and ϕ → ψ denotes the
logical implication. Armstrong [1974] proved the soundness and the completeness of
this logical system with respect to a database semantics.

The above axioms became known in database literature as Armstrong’s ax-
ioms [Garcia-Molina et al. 2009, p. 81]. Beeri, Fagin, and Howard [1977] suggested
a variation of Armstrong’s axioms that describes properties of multi-valued depen-
dency. Hartmann, Link, and Schewe [2004] investigated a “weak” version of functional
dependency. Väänänen [2007] proposed a first order version of these principles. Nau-
mov and Nicholls [2014] developed a similar set of axioms for what they called the
rationally functional dependency.

1.2. Approximate Dependency
There have been two different approaches to extending Armstrong’s axioms to handle
approximate reasoning. Bělohlávek and Vychodil [2006] described a complete logical
system that formally captures the relation approximate values of secrets in set A func-
tionally determine approximate values of secrets in set B. In [2017], Väänänen consid-
ered the relation secrets in set A determine secrets in set B with exception of p fraction
of possible combinations of values of all secrets. We denote this relation by A�p B. For
example, A�0.05B means that secrets in set A determine secrets in set B in all but 5%
of the possible combinations. Väänänen [2017] proposed a complete axiomatic system
for this relation, consisting of the following principles for all real numbers p, q ∈ [0, 1]:

(1) Reflexivity: A�0 B, where B ⊆ A,
(2) Totality: A�1 B,
(3) Weakening: A�p C,D → A,B �p C,
(4) Augmentation: A�p B → A,C �p B,C,
(5) Transitivity: A�p B → (B �q C → A�p+q C), where p+ q ≤ 1,
(6) Monotonicity: A�p B → A�q B, where p ≤ q.

Note that Väänänen’s relationA�pB, when p = 0, is exactly the original Armstrong’s
functional dependency relation. In the case of an arbitrary p, relation A�p B could be
considered as a “weaker” form of functional dependency, which might hold even in the
cases where the functional dependency does not hold.

1.3. Our Contribution
In this article we propose another interpretation of atomic predicateA�pB that we call
the budget-constrained dependency. Just like Väänänen’s approximate dependency, the
budget-constrained dependency is a weaker form of the original Armstrong’s functional
dependency relation. Intuitively,A�pB means that an agent who already knows secrets
in set A can recover secrets in set B at cost no more than p. More formally, we assume
that a non-negative cost is assigned to each secret and that A�pB means that there is
a way to add several secrets with the total cost no more than p to set A in such a way
that the extended set of secrets functionally determines all secrets in set B.

One example of such a setting is fees associated with information access: criminal
background check fees, court records obtaining fees, etc. Another example is geological
explorations, where learning about deposits of mineral resources often requires costly
drilling. Although it is convenient to think about a budget constraint as a financial one,
a budget constraint can also refer to a limit on time, space, or some other resource.

In this article we introduce a sound and complete logical system for the budget-
constrained dependency which is based on the following three principles that general-
ize Armstrong’s axioms:

(1) Reflexivity: A�p B, if B ⊆ A,

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:3

(2) Augmentation: A�p B → A,C �p B,C,
(3) Transitivity: A�p B → (B �q C → A�p+q C).

2. OTHER RELATED LITERATURE
The axiomatic system proposed in this article is related to other logical systems for
reasoning about bounded resources. The classical logical system for reasoning about
resources is the linear logic of Girard [1987]. Alechina and Logan [2002] presented
a family of logical systems for reasoning about beliefs of a perfect reasoner that can
only derive consequences of her beliefs after some time delay. This approach has been
further developed into the multi-agent Timed Reasoning Logic in [Alechina et al.
2004]. Bulling and Farwer [2010] proposed Resource-Bounded Tree Logics for rea-
soning about resource-bounded computations and obtained results on the complex-
ity and decidability of model checking for these logics. Alechina, Logan, Nguyen,
and Rakib [2011] incorporated resource requirements into Coalition logic and gave
a sound and complete axiomatization of the resulting system. Another logical system
for reasoning about knowledge under bounded resources was proposed by Jamroga
and Tabatabaei [2013]. Their paper focuses on the expressive power of the language of
the system and the model checking algorithm. Naumov and Tao introduced sound and
complete modal logics for reasoning about budget-constrained knowledge [2015] and
cost of privacy [2016b]. Unlike our current system all of the above logics do not provide
a language for expressing functional dependencies. An extended abstract of the present
work, without the proof of the completeness, has previously appeared as [Naumov and
Tao 2016a].

3. OUTLINE
The rest of the article is organized as follows. In Section 4 we informally discuss sev-
eral properties of budget-constrained dependencies that illustrate the challenges of
adopting Armstrong axioms to this new setting. In Section 5.1 we formally define the
language of our logical system and its informational semantics. In Section 5.2 we list
the axioms of the system that have already been discussed in the introduction. In Sec-
tion 5.3 we give several examples of formal proofs in our logical system. In Section 6
we prove the soundness of our axioms with respect to the informational semantics.
Section 7 states the completeness theorem. In Section 8 we introduce an auxiliary
hypergraph semantics of our logical system and prove the completeness with respect
to this semantics. In Section 9 we use the result obtained in the previous section to
prove the completeness of our logical system with respect to the informational seman-
tics. Section 10 strengthens the informational completeness results by proving the
completeness with respect to a more narrow class of finite cost informational models.
Section 11 concludes the article.

4. MOTIVATIONAL EXAMPLES
Armstrong’s axioms of functional dependency as well as our axioms of budget-
constrained functional dependency can be formulated into two different ways using
languages with different expressive power.

One approach is to allow only statements in our language that have the form A �p

B and not allow Boolean combinations of such statements. In this case, Armstrong’s
axioms should be stated as inference rules that allow to derive statements of the form
A�p B from other statements of the same form.

The other approach is to include Boolean connectives into the language. In this case,
statements of the form A�p B become atomic statements in the language. Then, Arm-
strong’s axioms can be stated as actual axioms that would be used in the logical system
along with the propositional tautologies and Modus Ponens inference rule.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 P. Naumov and J. Tao

The second approach clearly yields a more expressive language. While the proofs of
the completeness of original Armstrong’s axioms of functional dependency are surpris-
ingly similar for these two cases, the situation is different when it comes to budget-
constrained dependency. The more expressive language requires a significantly more
sophisticated argument to prove the completeness theorem. In this article we only con-
sider the more expressive language. In the rest of this section we look at several ex-
amples to compare challenges raised by the proofs of the completeness for Armstrong’s
functional dependency and our budget-constrained dependency.

As the first example, consider the formula a� b→ b�a in the language without bud-
get constraints. To construct a counterexample for this formula we need to describe a
model in which secret a functionally determines secret b but not vice versa. Informally,
to construct this model, imagine a and b to be two paper folders. Let folder a contain
copies of two different (and unrelated to each other) documents:X and Y , and let folder
b contain only a copy of document Y . In this case, an agent can recover the content of
folder b based on folder a but not vice versa.

a

X

b

Fig. 1. Formula a� b is true, but formula b� a is false.

There is even a simpler counterexample for formula a�b→ b�a. Namely, consider a
model in which folder a stores a copy of document X and folder b is empty, see Figure 1.
In this model, based on the content of folder a one can vacuously recover the content
of empty folder b. At the same time, based on the content of empty folder b one cannot
recover the content of folder a. Thus, in this model formula a� b→ b� a is false.

a

X

b

Y

Fig. 2. Formulas a� b and b� a are both false.

Now consider formula a� b∨ b�a. To construct its counterexample, one can consider
a model in which folders a and b containing copies of two different (and unrelated to
each other) documents X and Y respectively, see Figure 2.

To construct counterexamples for more complicated formulas, one can consider mod-
els with multiple folders containing copies of multiple documents. An example of such
a model is depicted in Figure 3. In this model a, b�c is true because anyone with access
to folders a and b knows the content of folder c. The folder/document model informally
described here is sufficiently general to create a counterexample for each formula un-
provable from Armstrong’s axioms.

In fact, the original Armstrong’s proof of the completeness for his rule-based system
and the proof of the completeness for the corresponding axiom-based system [Heckle

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:5

cb

Y

Y

a

Z

XX

Fig. 3. Formula a, b� c is true.

and Naumov 2014] could be viewed as formalizations of this folder/document construc-
tion.

b

X

a

$5$3

Fig. 4. Formula a�4 b is false.

The situation becomes significantly more complicated once the cost of information is
added to the language. Let us start with a very simple example. If we want to construct
a counterexample for formula a�4 b, then we can consider a model depicted in Figure 4
with two folders: a and b, priced at $3 and $5, respectively. The first folder is empty and
the second contains a copy of the document X. It is clear that in this model anyone
who knows the content of folder a still needs to spend $5 to learn the content of folder
b. Thus, budget-constrained dependency a �p b is not satisfied in this model for each
p < 5.

b

X

a

$5$3

c

Encrypt(X,P)

$4

P

Fig. 5. Formula a�4 b→ ∅�4 b is false.

Let us now consider a more interesting example. Suppose that we want to construct
a counterexample for the formula a�4 b→ ∅�4 b. That is, we want to construct a model
where anyone who knows the content of folder a can reconstruct the content of folder b
after spending at most $4. Yet, the same cannot be done without access to folder a. To

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 P. Naumov and J. Tao

construct such a model we use the cryptographic tool called one-time encryption pad1.
Our model consists of three folders a, b, and c priced at $3, $5, and $4, respectively, see
Figure 5. Let folder b contain a copy of a document X, folder c contain an encryption
pad P , and folder a contain the encrypted version of the document. In this model, ∅�4b
is false because $4 buys either access to the encryption pad in folder c or access to the
encrypted text in folder a, but not both. However, formula a �4 b is true in the same
model because anyone who knows encrypted text Encrypt(X,P) can spend $4 on pad
P , decode message X, and thus, learn the content of folder b.

The one-time pad encryption is known in cryptography as a symmetric-key algo-
rithm because the same key (i.e. the one-time pad) could be used to encrypt and to
decrypt the text. As a result, in the model depicted in Figure 5, not only formula a�4 b
is true, but formula b�4 a is true as well.

For the next example, we construct a counterexample for formula

a�4 b→ (∅�4 b ∨ b�4 a).

b

X

a

$5$7

c

Encrypt(X,P)

$4

P

Y

Fig. 6. Formula a�4 b→ (∅�4 b ∨ b�4 a) is false.

This is an easier task than one might think because one just needs to modify the previ-
ous model by adding to the folder a some extra document not related to the document
X and to raise the price of this folder, see Figure 6. This guarantees that the only way
to learn all the content of folder a is to buy folder a directly.

The situation becomes much more complicated if we want (i) the value of secret a to
be recoverable from the value of secret b and (ii) the value of secret b to be recoverable
from the value of secret a, but at a different price. For instance, if we want to construct
a counterexample for the following formula:

a�1 b ∧ b�5 a→ (∅�5 a ∨∅�1 b ∨ b�4 a). (1)

At first glance, this goal could be achieved using asymmetric key cryptography, com-
monly used in the public-key encryption. For instance, suppose that folder a contains
a document X and folder b contains the same document encrypted with an encryption
key ke, see Figure 7. To obtain the content of folder b based on the content of folder a,
one only needs to know the encryption key ke. To restore the content of folder a based
on folder b one needs to know the value of the decryption2 key kd. If the encryption key
and the decryption key are priced at $1 and $5 respectively, the formula b �4 a is not

1The one-time encryption pad is not the only way to construct a counterexample for formula a�4 b→ ∅�4 b.
We introduce one-time pads to prepare readers for the general proof of the completeness presented later in
this article.
2In public-key cryptography, an encryption key is known as the public key and a decryption key as the
private key. We do not use these terms here because in our setting neither of the keys is public in the sense
that both of them have associated costs.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:7

satisfied from the cryptographic point of view. Since folders a and b are priced in this
model at $100 each, formulas ∅�5a and ∅�1 b are not satisfied either. Thus, the entire
formula (1) is not satisfied from the cryptographic point of view.

Note, however, that cryptographic asymmetric-key algorithms are only polynomial
time secure and the proof of polynomial time security requires an appropriate compu-
tational hardness assumption [Katz 2010, Ch. 2]. In other words, in public-key cryptog-
raphy, the encrypted text can be decrypted using only the public encryption key if one
has exponential time for the decryption. Neither Armstrong’s [Armstrong 1974] defi-
nition of functional dependency nor our definition of budget-constrained functional de-
pendency, given in Definition 5.6 below, assumes any upper bound on the computability
of the functional dependency. From our point of view, one would be able to eventually
restore the content of folder a based on folder b by spending $1 on the content of folder
c. Thus, in the above setting, without the polynomial restriction on computability, not
only formula b�4 a is true, but formula b�1 a is true as well.

a

X

$100

b

$100

AsymEncrypt(X,ke)

c

$1

ke

d

kd

$5

Fig. 7. An asymmetric key model.

b

Encrypt(Encrypt(Y,P1),Q2)

a

Encrypt(Encrypt(X,Q1),P2)

$100

$100

c

$1

P1

Y

d

Encrypt(X,Q1)

X

Encrypt(Y,P1)

Encrypt(Encrypt(Encrypt(X,Q1),P2),Q3)

Encrypt(Encrypt(Encrypt(Y,P1),Q2),P3)

......

......

P2 P3

......
Q1 Q2 Q3

......

$5

Fig. 8. A counterexample for statement (1).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 P. Naumov and J. Tao

Figure 8 shows a counterexample for statement (1) that uses non-computable func-
tional dependency. Assume that folders a and b contain copies of unrelated documents
X and Y , folder c contains an infinite supply of one-time encryption pads P1, P2, P3, . . .
and folder d contains another infinite set of one-time encryption pads Q1, Q2, Q3,
First, encrypt document Y with one-time pad P1 and place a copy of the resulting
cyphertext Encrypt(Y, P1) into folder a. Next, encrypt Encrypt(Y, P1) with pad Q2 and
place a copy of the resulting cyphertext Encrypt(Encrypt(Y, P1), Q2) into folder b. Then,
use pad P3 to encrypt Encrypt(Encrypt(Y, P1), Q2) and place a copy of the resulting
cyphertext Encrypt(Encrypt(Encrypt(Y, P1), Q2), P3) into folder a, and so on ad infini-
tum. Perform similar steps with the document X, as shown in Figure 8.

To show that the model depicted in Figure 8 is a counterexample for formula (1), we
need to prove that both formulas a�1 b and b�5 a are satisfied in this model and each
of the formulas ∅ �5 a, ∅ �1 b, and b �4 a is not satisfied. First, notice that formula
a �1 b is satisfied because folder a contains all documents in folder b encrypted with
one-time pads P1, P2, . . . and that all these pads could be acquired for $1 by buying
folder c. Second, formula b �5 a is satisfied for a similar reason using pads Q1, Q2,
Third, formula ∅ �5 a is not satisfied because for $5 one can only buy either folder c
or folder d, both containing only one-time pads. In the absence of folder b, one-time
encryption pads can not be used to recover document X stored in folder a. Formula
∅ �1 b is not satisfied for a similar reason. Finally, b �4 a is not satisfied because $4
is not enough to buy the content of folder d. This amount of money can only be used
to buy pads P1, P2, . . . in folder c. Knowing the content of folder b and one-time pads
P1, P2, . . . , one can not recover document X contained in folder a. The counterexample
described above produces non-computable functional dependency because the number
of folders is infinite.

In this article we prove the completeness of our logical system. At the core of this
proof is a generalized version of the construction presented in Figure 8.

5. LOGICAL SYSTEM
5.1. Syntax and Semantics
In this section we introduce the language of our system and formally describe its in-
tended semantics that we call informational semantics. Later on we introduce an aux-
iliary hypergraph semantics used as a technical tool in the proof of the completeness
with respect to the original informational semantics.

Definition 5.1. For any set of “secrets” S, let language Φ(S) be the minimum set of
formulas such that

(1) A�p B ∈ Φ(S) for all finite sets A,B ⊆ S and all real numbers p ≥ 0,
(2) if ϕ ∈ Φ(S), then ¬ϕ ∈ Φ(S),
(3) if ϕ,ψ ∈ Φ(S), then ϕ→ ψ ∈ Φ(S).

Next, we introduce the formal informational semantics of our logical system.
The only significant difference between our semantics and the one used by Arm-
strong [1974] is the cost function ‖ · ‖ that assigns a non-negative cost to each secret.
Note that we assume that the cost is assigned to a secret, not to its value. For example,
if we assign a certain cost to a folder with documents, then this cost is uniform and
does not depend on the content of the documents in this folder.

Definition 5.2. An informational model is a tuple 〈S, {Da}a∈S , ‖ · ‖,L〉, where

(1) S is an arbitrary set of “secrets”,
(2) Da is a set representing the domain of secret a ∈ S,

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:9

(3) ‖ · ‖ is a cost function that maps each secret a ∈ S into a non-negative real number
or infinity +∞,

(4) L ⊆
∏

a∈S Da is the set of vectors of values of secrets that satisfy the constraints
imposed by the informational model.

Note that we allow infinite attribute costs in our semantics captured in Definition 5.2
to include the possibility of attributes that cannot be bought. For the same reason,
we do not allow infinite costs in our syntax given in Definition 5.1. In the example
depicted in Figure 8, folders are secrets and the information stored in the documents
contained in a folder is a value of such a secret. The set of all possible values of a secret
is its domain. The cost of different secrets is specified explicitly in Figure 8. Note that
there is a certain dependency between the plaintext, one-time encryption pads, and
the cyphertext. In other words, not all combinations of values of different secrets are
possible. The set L is the set of all possible combinations of these values.

We allow the cost ‖a‖ of a secret a to be infinity. Informally, one can interpret this
as secret a not being available for purchase at any cost. If all secrets are available for
sale, then we say that the informational model is finite cost.

As an example, the setting described in Figure 4 could be formally captured in infor-
mational model I0 = 〈{a, b}, {Dx}x∈{a,b}, ‖ · ‖,L〉, where the domain (range of values)
Da of the empty folder a is a single element set: {null}, the domain Db of secret b is the
set of all, say binary, strings {0, 1}∗, cost ‖a‖ of secret a is 3, cost ‖b‖ of secret b is 5, and
set of vectors L is the set of all pairs in set Da ×Db = {〈null, s〉 | s ∈ {0, 1}∗}.

Definition 5.3. Informational model 〈S, {Da}a∈S , ‖ · ‖,L〉 is finite cost if ‖a‖ < +∞
for each a ∈ S.

For example, informational model I0 for the setting described in Figure 4 is a finite
cost model, because ‖a‖ = 3 <∞ and ‖b‖ = 5 <∞.

Definition 5.4. For any vector `1 = 〈f1a 〉a∈S ∈ L, any vector `2 = 〈f2a 〉a∈S ∈ L, and
any set A ⊆ S, let `1 =A `2 if f1a = f2a for each secret a ∈ A.

For example, 〈null, 01〉 ={a} 〈null, 1011〉 and 〈null, 01〉 6={a,b} 〈null, 1011〉 for model I0.

Definition 5.5. For each finite set A ⊆ S, let ‖A‖ =
∑

a∈A ‖a‖.

Thus, ‖{a, b}‖ = ‖a‖+ ‖b‖ = 3 + 5 = 8 for model I0.
The next definition is the key definition of this section. It specifies the formal se-

mantics of our logical system. Item 1. of this definition provides the exact meaning of
the budget-constrained dependency. In this definition and throughout the rest of the
article, by A,B we denote the union of sets A and B.

Definition 5.6. For each informational model I = 〈S, {Da}a∈S , ‖ · ‖,L〉 and each
formula ϕ ∈ Φ(S), the satisfiability relation I � ϕ is defined as follows:

(1) I � A�p B when there is a finite set C ⊆ S such that ‖C‖ ≤ p and for each pair of
vectors `1, `2 ∈ L, if `1 =A,C `2, then `1 =B `2,

(2) I � ¬ψ if I 2 ψ,
(3) I � ψ → χ if I 2 ψ or I � χ.

Then, I0 ∅�0 a because `1 =a `2 for any two vectors `1, `2 ∈ {null} × {0, 1}∗.

5.2. Axioms
For any set of secrets S, our logical system, in addition to the propositional tautologies
in language Φ(S) and the Modus Ponens inference rule, contains the following axioms:

(1) Reflexivity: A�p B, where B ⊆ A,

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 P. Naumov and J. Tao

(2) Augmentation: A�p B → A,C �p B,C,
(3) Transitivity: A�p B → (B �q C → A�p+q C).

We write ` ϕ if formula ϕ is derivable in our system. Also, we write X ` ϕ if formula
ϕ is derivable in our system extended by the set of additional axioms X.

5.3. Examples of Proofs
We prove the soundness of our logical system in the next section. Here we provide
several examples of formal proofs in this system. We start by showing that Weakening
and Monotonicity axioms [Väänänen 2017] are derivable in our system.

PROPOSITION 5.7 (WEAKENING). ` A�p C,D → A,B �p C.

PROOF. By Augmentation axiom,

` A�p C,D → A,B �p B,C,D. (2)

By Reflexivity axiom,
` B,C,D �0 C. (3)

By Transitivity axiom,

A,B �p B,C,D → (B,C,D �0 C → A,B �p C). (4)

Finally, from (2), (3), and (4), by the laws of propositional logic,

` A�p C,D → A,B �p C.

PROPOSITION 5.8 (MONOTONICITY). ` A�p B → A�q B, where p ≤ q.
PROOF. By Reflexivity axiom,

` B �q−p B. (5)
By Transitivity axiom,

` A�p B → (B �q−p B → A�q B). (6)

Finally, from (5) and (6), by the laws of propositional logic,

` A�p B → A�q B.

As our last example, we prove a generalized version of Augmentation axiom.

PROPOSITION 5.9. ` A�p B → (C �q D → A,C �p+q B,D).

PROOF. By Augmentation axiom,

` A�p B → A,C �p B,C (7)

and
` C �q D → B,C �q B,D. (8)

At the same time, by Transitivity axiom,

` A,C �p B,C → (B,C �q B,D → A,C �p+q B,D). (9)

Finally, from (7), (8), and (9), by the laws of propositional logic,

` A�p B → (C �q D → A,C �p+q B,D).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:11

6. SOUNDNESS
In this section we prove the soundness of our logical system.

THEOREM 6.1. If ϕ ∈ Φ(S) and ` ϕ, then I � ϕ for each informational model
I = 〈S, {Da}a∈S , ‖ · ‖,L〉.

The soundness of propositional tautologies and the Modus Ponens inference rule fol-
lows from Definition 5.6 in the standard way. Below we prove the soundness of the
remaining axioms as separate lemmas.

LEMMA 6.2. For all finite sets A,B ⊆ S, if B ⊆ A, then I � A�p B.

PROOF. Let C = ∅. Thus, ‖C‖ = ‖∅‖ = 0 ≤ p. Consider any two vectors `1, `2 ∈ L
such that `1 =A,C `2. It suffices to show that `1 =B `2, which is true due to Defini-
tion 5.4 and the assumption B ⊆ A.

LEMMA 6.3. For all finite sets A,B,C ⊆ S, if I � A�p B, then I � A,C �p B,C.

PROOF. By Definition 5.6, assumption I � A�p B implies that there is a set D ⊆ S
such that (i) ‖D‖ ≤ p and (ii) for each `1, `2 ∈ L, if `1 =A,D `2, then `1 =B `2.

Consider now `1, `2 ∈ L such that `1 =A,C,D `2. It suffices to show that `1 =B,C `2.
Note that assumption `1 =A,C,D `2 implies that `1 =A,D `2 and `1 =C `2 by Defini-
tion 5.4. Due to condition (ii) above, the former implies that `1 =B `2. Finally, state-
ments `1 =B `2 and `1 =C `2 together imply that `1 =B,C `2.

LEMMA 6.4. For all finite sets A,B,C ⊆ S, if I � A �p B and I � B �q C, then
I � A�p+q C.

PROOF. By Definition 5.6, assumption I � A�p B implies that there is D1 ⊆ S such
that (i) ‖D1‖ ≤ p and (ii) for each `1, `2 ∈ L, if `1 =A,D1 `2, then `1 =B `2.

Similarly, assumption I � B�qC implies that there isD2 ⊆ S such that (iii) ‖D2‖ ≤ q
and (iv) for each `1, `2 ∈ L, if `1 =B,D2 `2, then `1 =C `2.

Let D = D1, D2. By Definition 5.5, ‖D‖ ≤ ‖D1‖ + ‖D2‖. Taking into account state-
ments (i) and (iii) above, we conclude that ‖D‖ ≤ p + q. Consider any two vectors
`1, `2 ∈ L such that `1 =A,D `2. It suffices to show that `1 =C `2. Indeed, by Defi-
nition 5.4, assumption `1 =A,D `2 implies that `1 =A,D1

`2. Hence, `1 =B `2 due to
condition (ii). At the same time, assumption `1 =A,D `2 also implies that `1 =D2

`2 by
Definition 5.4. Thus, `1 =B,D2

`2 by Definition 5.4. Therefore, `1 =C `2 due to condition
(iv).

This concludes the proof of Theorem 6.1.

7. ON THE COMPLETENESS THEOREM
The main result of this article is a completeness theorem for our logical system with
respect to the informational semantics. The completeness could be stated in different
non-equivalent forms that we discuss and compare in this section.

Informally, a completeness theorem states that if a formula ϕ is not provable in our
system, then there is an informational model I such that I 2 ϕ. To state the theorem
formally, we need to decide if model I must use only secrets explicitly mentioned in
formula ϕ or a set of secrets of model I could be a superset of the set of secrets used in
formula ϕ.

This distinction applies not only to our system, but to other logical systems as well.
For example, formulas in first order logic can have constants. When we prove the com-
pleteness of the first order logic, we allow universes that have more elements than the

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 P. Naumov and J. Tao

number of constants. This is significant because, for example, formula

∀x(c1 = c2 ∨ x = c1 ∨ x = c2) (10)

is not provable in the first order logic, but it is true in any model with a universe
consisting of only elements that are interpretations of c1 and c2. Thus, to construct a
counterexample for this formula one needs to consider first order models with more
than two elements in the universe.

The situation with our logical system is similar. To prove the completeness of the
system we often need to introduce additional secrets not explicitly mentioned in the
formula. An analog of formula (10) is, for example, formula

¬(a�1 b)→ (¬(b�1 a)→ ¬(∅�2 a, b)). (11)

This formula is true in any informational model that has only two secrets explicitly
mentioned in the formula: secret a and secret b. Indeed, the assumption ¬(a �1 b)
implies that costs of secret b is more than 1. Similarly, assumption ¬(b �1 a) implies
that costs of secret a is more than 1. So, given a budget of only 2, one can buy at most
one of secrets a and b. Without loss of generality, assume that secret a is bought. After
that purchase, the amount left is less than 1. Per assumption ¬(a �1 b), the value of b
is not attainable on this budget.

At the same time, formula (11) is not true in the information model that has three
secrets: a, b, and c, all priced at 1.5, where values of a and b are unrelated and c is pair
〈a, b〉. One can think about this example as a formalization of “buy one, get one free”
marketing.

In this article we study the most general logical principles of budget-constrained
dependency. Thus, we do not include principles like formula (11), that are true only for
a specific set of secrets. In other words, when constructing a counterexample for the
completeness theorem, we allow additional secrets that are not explicitly mentioned in
the original formula. The completeness theorem is stated below.

THEOREM 7.1. For each formula ϕ ∈ Φ(S), if 0 ϕ, then there is an informational
model I = 〈S, {Da}a∈S , ‖ · ‖,L〉 such that I 2 ϕ.

We prove this theorem in Section 9. Later, see Theorem 10.6, we also state and prove
the completeness theorem for finite cost informational models.

8. AUXILIARY HYPERGRAPH SEMANTICS
The main goal of the rest of the article is to prove the completeness of our logical system
with respect to the informational semantics. To achieve this goal we introduce the
hypergraph semantics of our logical system and prove that the following statements
are equivalent for each formula ϕ:

(1) ϕ is provable in our logical system,
(2) ϕ is satisfied in each informational model,
(3) ϕ is satisfied in each hypergraph.

We prove the equivalence of these statements by showing that the first statement
implies the second, the second implies the third, and the third implies the first. Note
that we have already proved in Theorem 6.1 that the first statement implies the second
one. In the rest of the article we prove that the second statement implies the third
one and that the third one implies the first one. Together, these results will imply the
soundness and the completeness of our logical system with respect to the informational
semantics.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:13

8.1. Hypergraph Terminology
Before defining the hypergraph semantics of our logical system, we introduce the ba-
sic hypergraph terminology used throughout the rest of the article. In mathematics, a
hypergraph is a generalization of a graph in which edges have arbitrary numbers of
ends, see [Berge 1989]. Our hypergraph semantics is based on weighted directed hy-
pergraphs. In such hypergraphs, edges are directed in the sense that they have multi-
ple tails and multiple heads. For any given edge e, we denote these sets by in(e) and
out(e). The edges are weighted in the sense that there is a non-negative value assigned
to each edge.

Definition 8.1. A weighted directed hypergraph, or just a “hypergraph”, is a tuple
〈V,E, in, out, w〉, where

(1) V is an arbitrary finite set of “vertices”,
(2) E is an arbitrary (possibly infinite) set of “edges”, disjoint with set V ,
(3) in is a function that maps each edge e ∈ E into set in(e) ⊆ V ,
(4) out is a function that maps each edge e ∈ E into set out(e) ⊆ V ,
(5) w is a function that maps each edge e ∈ E into a real number w(e) ≥ 0.

Definition 8.2. For any hypergraph 〈V,E, in, out, w〉 and any set F ⊆ E, let w(F) =∑
e∈F w(e).

Next, we define the closure A∗F of a set of vertices A with respect to a set of edges F
of a hypergraph. Informally, the closure A∗F is the set of all vertices that are reachable
from a vertex in set A following the directed edges in set F . In order to follow a di-
rected edge e ∈ F , one needs to be able to first reach all vertices in set in(e). To define
the closure A∗F , we first define the partial closure Ak

F of all vertices reachable from A
through F in no more than k steps:

Definition 8.3. For each weighted directed hypergraph 〈V,E, in, out, w〉, each set
A ⊆ V , each set F ⊆ E, and each non-negative integer k, let set Ak

F be defined recur-
sively as follows:

(1) A0
F = A,

(2) for any k ≥ 0,

Ak+1
F = Ak

F ∪
⋃

{f∈F | in(f)⊆Ak
F }

out(f).

Figure 9 depicts a hypergraph where vertices are represented by circles and edges
by ovals. We use arrows to indicate tails and heads of an edge. An arrow from a vertex
to an edge indicates that the vertex is a tail of the edge, and an arrow from an edge to
a vertex indicates that the vertex is a head of the edge. For example, in(e1) = {v1, v2}
and out(e1) = {v3, v4}. The same figure shows partial closures A0

F = {v1, v2}, A1
F =

{v1, v2, v3, v4}, and A2
F = {v1, v2, v3, v4, v5, v6}, where A = {v1, v2} and F = {e1, e2}.

Finally, we define closure A∗F to be the union of all partial closures:

Definition 8.4. A∗F =
⋃

k≥0A
k
F .

Next, we establish two properties of closures that are used later in the proof of the
completeness for the hypergraph semantics.

LEMMA 8.5. For each set of vertices A ⊆ V and each set of edges F ⊆ E there is
k ≥ 0 such that A∗F = Ak

F .

PROOF. By Definition 8.1, the set of all vertices V is finite. Thus, by Definition 8.3,
chain A0

F ⊆ A1
F ⊆ A2

F ⊆ . . . is a non-decreasing chain of subsets of finite set V . Hence,

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 P. Naumov and J. Tao

e1

v2

v1

v4

e2

v5

v3

v6

A0F

A1F
A2F

Fig. 9. Ak
F for A = {v1, v2} and F = {e1, e2}.

there must exist k ≥ 0 such that all sets in this chain starting with set Ak
F are equal.

Therefore, A∗F = Ak
F by Definition 8.4.

LEMMA 8.6. For each k ≥ 0, each set of vertices A ⊆ V , and each set of edges F ⊆ E,
there is a sequence A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak

F such that

(1) n ≥ 1,
(2) f1, . . . , fn−1 ∈ F are distinct edges,
(3) A1, . . . , An−1, and An are subsets of set V ,
(4) in(fi) ⊆ Ai, for each 1 ≤ i < n,
(5) Ai ∪ out(fi) = Ai+1, for each 1 ≤ i < n.

PROOF. We prove this lemma by induction on k. If k = 0, then Ak
F = A by Defini-

tion 8.3. Therefore, the single-element sequence A is the desired sequence.
For the induction step, assume that there is a sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak
F

that satisfies the conditions 1 through 5 above. Let g1, . . . , gm be all such edges g ∈ F
that in(g) ⊆ Ak

F and out(g) * Ak
F . By the condition 5 above, the condition out(g) * Ak

F

implies that none of g1, . . . , gm is equal to any of f1, . . . , fn−1. Note that Ak+1
F = Ak

F ∪⋃m
i=1 out(gi) by Definition 8.3. Therefore, the two-line sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = Ak
F , g1, A

k
F ∪ out(g1),

g2, A
k
F ∪ out(g1) ∪ out(g2), g3, . . . , gm, A

k
F ∪

m⋃
i=1

out(gi) = Ak+1
F

is the required sequence for k + 1.

8.2. Hypergraph Completeness
In this section we define the hypergraph semantics of our logical system and prove the
completeness of the system with respect to this auxiliary semantics. In other words, us-
ing statements defined in the beginning of Section 8, we prove that the third statement
implies the first one. The hypergraph semantics is specified in the following definition.
Item 1 in this definition is the key part because it specifies the meaning of the atomic

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:15

predicate A�pB. Note that we use symbol � for the satisfiability relation under the in-
formational semantics discussed previously and for the satisfiability relation under
the hypergraph semantics introduced here.

Definition 8.7. For each hypergraph H = 〈V,E, in, out, w〉 and each formula ϕ ∈
Φ(V), the satisfiability relation H ϕ is defined as follows:

(1) H A�p B if there is a finite set F ⊆ E such that w(F) ≤ p and B ⊆ A∗F ,
(2) H ¬ψ if H 1 ψ,
(3) H ψ → χ if H 1 ψ or H ψ.

The next theorem is the completeness theorem for the hypergraph semantics of our
logical system. Note that in Section 7, we stated that the proof of the completeness
with respect to the informational semantics requires an introduction of new secrets in
addition to those explicitly mentioned in the given formula. Such an extension, how-
ever, is not required in the case of the hypergraph semantics.

THEOREM 8.8. Let V be a set and ϕ ∈ Φ(V). If H ϕ for each hypergraph H with
set V as vertices, then ` ϕ.

PROOF. Suppose that 0 ϕ. Let X be a maximal consistent subset of Φ(V) con-
taining formula ¬ϕ. We define a hypergraph H = 〈V,E, in, out, w〉 as follows. Let E
be set {〈A, p,B〉 | A �p B ∈ X}. For each edge 〈A, p,B〉 ∈ E, let in(〈A, p,B〉) = A,
out(〈A, p,B〉) = B, and w(〈A, p,B〉) = p. In the four lemmas that follow, we establish
basic properties of the hypergraph H needed to finish the proof of the completeness.

LEMMA 8.9. in(e) �w(e) out(e) ∈ X for each e ∈ E.

PROOF. Consider any edge e = 〈A, p,B〉 ∈ E. Thus, A�p B ∈ X by the definition of
set E. Hence, in(e) �w(e) out(e) ∈ X by the definitions of functions in, out, and w.

LEMMA 8.10. X ` A �p A
∗
F for each finite F ⊆ E such that w(F) ≤ p and for each

set A ⊆ V .

PROOF. By Lemma 8.5, there must exist k ≥ 0 such that A∗F = Ak
F . Thus, by

Lemma 8.6, there is a sequence

A = A1, f1, A2, f2, . . . , An−1, fn−1, An = A∗F (12)

such that

(1) n ≥ 1,
(2) f1, . . . , fn−1 ∈ F are distinct edges,
(3) A1, . . . , An−1, and An are subsets of set V ,
(4) in(fi) ⊆ Ai, for each 1 ≤ i < n,
(5) Ai ∪ out(fi) = Ai+1, for each 1 ≤ i < n.

Towards the proof of the lemma, we first show that

X ` A�∑m−1
i=1 w(fi)

Am (13)

for each 1 ≤ m ≤ n. We prove this by induction on m. If m = 1, then Am = A due to the
choice of sequence (12). Thus, X ` A�0 A1 by Reflexivity axiom.

Assume that X ` A �∑m−1
i=1 w(fi)

Am. We need to show that X ` A �∑m
i=1 w(fi) Am+1.

Indeed, since fm ∈ F ⊆ E, then by Lemma 8.9, we have

in(fm) �w(fm) out(fm) ∈ X.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 P. Naumov and J. Tao

Thus,

X ` Am, in(fm) �w(fm) Am, out(fm)

by Augmentation axiom. Note that in(fm) ⊆ Am due to the condition 4 above. Hence,

X ` Am �w(fm) Am, out(fm).

Also note that Am ∪ out(fm) = Am+1 by condition 5 above. Thus,

X ` Am �w(fm) Am+1.

Therefore, by the induction hypothesis and Transitivity axiom,

X ` A�∑m
i=1 w(fi) Am+1.

This completes the proof of statement (13). To finish the proof of the lemma, note that
the assumption w(F) ≤ p implies

∑n−1
i=1 w(fi) ≤ p. At the same time, statement (13)

for m = n asserts that X ` A �∑n−1
i=1 w(fi)

An. Hence, X ` A �p An by Proposition 5.8.
Therefore, X ` A�p A

∗
F due to the choice of sequence (12).

LEMMA 8.11. A�p B ∈ X if and only if H A�p B, for all sets A,B ⊆ V and each
non-negative real number p.

PROOF. (⇒). Suppose that A �p B ∈ X. Then, 〈A, p,B〉 ∈ E by the choice of set E.
Let F be the singleton set {〈A, p,B〉}. Note that w(F) = p, in(〈A, p,B〉) = A = A0

F , and,
by Definition 8.3 and Definition 8.4,

B = out(〈A, p,B〉) ⊆
⋃

{f∈F | in(f)⊆A0
F }

out(f) ⊆ A1
F ⊆ A∗F .

Hence, B ⊆ A∗F . Therefore, H A�p B by Definition 8.7.
(⇐). Suppose that H A �p B. Then, by Definition 8.7, there is a finite F ⊆ E such
that w(F) ≤ p and B ⊆ A∗F . Hence, ` A∗F �0 B by Reflexivity axiom. Additionally,
X ` A �p A

∗
F by Lemma 8.10. Thus, X ` A �p B by Transitivity axiom. Therefore,

A�p B ∈ X due to the maximality of the set X.

LEMMA 8.12. ψ ∈ X if and only if H ψ for each ψ ∈ Φ(V).

PROOF. We prove the lemma by induction on the structural complexity of formula ψ.
The case when ψ is of formA�pB follows from Lemma 8.11. The other cases follow from
the maximality and consistency of set X and Definition 8.7 in the standard way.

To conclude the proof of the theorem, note that assumption ¬ϕ ∈ X implies that
H 1 ϕ by Lemma 8.12 and Definition 8.7.

9. COMPLETENESS THEOREM FOR THE INFORMATIONAL SEMANTICS
In this section, we prove the completeness theorem for the informational semantics
stated previously as Theorem 7.1. This result could be rephrased in terms of state-
ments discussed in the beginning of Section 8 as: the second statement implies the
first one. In the previous section, we have already shown that the third statement im-
plies the first one. Thus, it suffices to prove that the second statement implies the third
one. In other words, we show that if formula ϕ is not satisfied by a hypergraph H, then
it is not satisfied by an informational model IH constructed from H. To prove this, we
first describe how to construct an informational model IH = 〈A, {Da}a∈A, ‖ ·‖,L〉 based
on a given hypergraph H = 〈V,E, in, out, w〉.

Let A = V ∪ E. Recall that sets V and E are disjoint due to Definition 8.1.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:17

Definition 9.1. For any secret a ∈ A = V ∪ E, the cost ‖a‖ is defined as follows:

‖a‖ =

{
w(a), if a ∈ E,
+∞, if a ∈ V .

We continue the construction with an auxiliary definition of a path on weighted
hypergraph model H. It is convenient to distinguish two types of paths: paths that are
initiated at a vertex and paths that are initiated at an edge. Note that paths of both
types terminate at a vertex.

Definition 9.2. A path initiated at vertex v0 is a finite alternating sequence of ver-
tices and edges 〈v0, e1, v1, e2, . . . , en, vn〉 such that

(1) n ≥ 0,
(2) vk−1 ∈ in(ek) for each 1 ≤ k ≤ n,
(3) vk ∈ out(ek) for each 1 ≤ k ≤ n.

For example, sequence 〈v1, e1, v4, e2, v6〉 is a path initiated at vertex v1 in the hyper-
graph depicted in Figure 9.

Definition 9.3. A path initiated at edge e1 is a finite alternating sequence of vertices
and edges 〈e1, v1, e2, . . . , en, vn〉 such that

(1) n ≥ 1,
(2) vk−1 ∈ in(ek) for each 1 < k ≤ n,
(3) vk ∈ out(ek) for each 1 ≤ k ≤ n.

Sequence 〈e1, v4, e2, v6〉 is a path initiated at edge e1 in the hypergraph depicted in
Figure 9.

To understand the rest of the construction of informational model IH , let us consider
an analogy between this construction and the informal document/folder model dis-
cussed in the introduction. The vertices of the hypergraph could be viewed as folders
with multiple documents and directed edges show the process of the dissemination and
the encryption of these documents between the folders. In our informational model, for
the sake of simplicity, each document consists of just a single bit. For the hypergraph
depicted in Figure 9, there might be a document (bit) xv6 initially stored in folder v6.
The value of this bit will be disseminated along various paths in the hypergraph and
encrypted versions of the document will be stored in different vertices (folders) along
these paths. More specifically, the value of each bit stored in a vertex is disseminated
against the direction of each edge leading to this vertex. In our example, because ver-
tex v6 is a head of edge e2 whose tails are v1 and v4, the encrypted value of xv6 is
disseminated between these two tails. Namely, bit xv6 is represented as a sum of three
bits ke2,v6 , xv1,e2,v6 and xv4,e2,v6 modulo two:

xv6 = ke2,v6 + xv1,e2,v6
+ xv4,e2,v6 (mod 2).

One can think of bit ke2,v6 as an encryption key stored in edge e2 and bits xv1,e2,v6 and
xv4,e2,v6 as encrypted documents distributed between vertices v1 and v4. Since vertex
v1 is not a head of any edge in the hypergraph depicted in Figure 9, the value of bit
xv1,e2,v6 is only stored in vertex v1 and not disseminated any further. At the same time,
because vertex v4 is a head of edge e1, the value of bit xv4,e2,v6

is further distributed
between tails of edge e1. It is represented as a sum of three bits ke1,v4,e2,v6 , xv1,e1,v4,e2,v6
and xv2,e1,v4,e2,v6 modulo two:

xv4,e2,v6 = ke1,v4,e2,v6 + xv1,e1,v4,e2,v6 + xv2,e1,v4,e2,v6 (mod 2).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 P. Naumov and J. Tao

Again, one can think of bit ke1,v4,e2,v6 as an encryption key stored at edge e1 and bits
xv1,e1,v4,e2,v6 and xv2,e1,v4,e2,v6 as encrypted documents distributed between vertices v1
and v2.

To summarize, informally, each edge in the hypergraph stores one encryption key
corresponding to each path initiated at this edge. Vertices store encrypted documents
as they are being disseminated along the paths. This intuition is captured in the two
definitions below.

Definition 9.4. For any secret a ∈ A = V ∪ E, let domain Da be defined as follows:

(1) If a ∈ V , then Da is the set of all functions that map paths initiated at vertex a into
set {0, 1}.

(2) If a ∈ E, then Da is the set of all functions that map paths initiated at edge a into
set {0, 1}.

Definition 9.5. Let L be the set of all vectors 〈fa〉a∈A ∈
∏

a∈ADa such that for each
edge-initiated path 〈e1, v1, e2, . . . , en, vn〉, the following equation is satisfied:

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) =

fv1(〈v1, e2, . . . , en, vn〉) (mod 2). (14)

This concludes the definition of the informational model IH = 〈A, {Da}a∈A, ‖ · ‖,L〉.
Definition 9.6. Let 0 be the vector 〈fa〉a∈A such that fa(π) = 0 for each a ∈ A and

each path π initiated at a.

LEMMA 9.7. 0 ∈ L.

PROOF. Equation (14) holds for vector 0 because 0 +
∑

u∈in(e1) 0 = 0 (mod 2).

The dissemination of encrypted information described above on the hypergraph de-
picted in Figure 9 takes place from a head vertex of an edge to the tail vertices of the
edge. This means that the bit stored at the head vertex could be determined based on
the encryption key and the bits stored at the tail vertices. In other words, information
flows in the direction that is opposite to the direction of the edge, but the functional
dependency exists in the same direction as the edge. This observation is the key to the
understanding of the next lemma.

LEMMA 9.8. For any set of vertices A ⊆ V , any set of edges F ⊆ E, any k ≥ 0, and
any two vectors `1, `2 ∈ L, if `1 =A,F `2, then `1 =Ak

F
`2.

PROOF. We prove the lemma by induction on k. If k = 0, then Ak
F = A by Defini-

tion 8.3. Thus, assumption `1 =A,F `2 implies that `1 =A `2 by Definition 5.4.
Suppose that `1 =Ak

F
`2. We need to prove that `1 =Ak+1

F
`2. By Definition 8.3, it

suffices to prove that `1 =b `2 for each e ∈ F and each b ∈ out(e), where in(e) ⊆ Ak
F . See

Figure 10.
Let `1 = 〈f1a 〉a∈A and `2 = 〈f2a 〉a∈A. It suffices to show that

f1b (〈b, e1, v1, . . . , en, vn〉) = f2b (〈b, e1, v1, . . . , en, vn〉)
for each path 〈b, e1, v1, . . . , en, vn〉 initiated at vertex b. Indeed, by Definition 9.5,

f1b (〈b, e1, v1, . . . , en, vn〉) = f1e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f1u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:19

e

u2

u3

b

e1

vn

u1

v1Ak
F Ak+1

F

e2 en

Fig. 10. Illustration to Lemma 9.8.

Recall that e ∈ F , and so, by Definition 5.4, assumption `1 =A,F `2 of the lemma implies
that `1 =e `2. Hence, f1e = f2e . Then,

f1b (〈b, e1, v1, . . . , en, vn〉) = f2e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f1u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

By induction hypothesis, `1 =Ak
F
`2. Additionally, in(e) ⊆ Ak

F by the choice of edge e.
Thus, `1 =in(e) `2 by Definition 5.4. Hence, f1u = f2u for each u ∈ in(e). Then,

f1b (〈b, e1, v1, . . . , en, vn〉) = f2e (〈e, b, e1, v1, . . . , en, vn〉) +∑
u∈in(e)

f2u(〈u, e, b, e1, v1, . . . , en, vn〉) (mod 2).

Therefore, f1b (〈b, e1, v1, . . . , en, vn〉) = f2b (〈b, e1, v1, . . . , en, vn〉), by Definition 9.5.

LEMMA 9.9. For any set of vertices A ⊆ V , any set of edges F ⊆ E, and any two
vectors `1, `2 ∈ L, if `1 =A,F `2, then `1 =A∗

F
`2.

PROOF. The statement of the lemma follows from Lemma 9.8 and Lemma 8.5.

A cut (V1, V2) is a partition of the set of all vertices V . We consider cuts to be directed
in the sense that (V1, V2) and (V2, V1) are two different cuts.

Definition 9.10. An edge e ∈ E is called a crossing edge of a cut (V1, V2), if in(e) ⊆ V1
and out(e) ∩ V2 6= ∅.

e1

v2

v1

v4

e2

v5

v3

v6

V1 V2

Fig. 11. Cross(c) = {e1}, where c = ({v1, v2, v3}, {v4, v5, v6})

The set of all crossing edges of cut c = (V1, V2) is denoted by Cross(c). For example,
edge e1 is the only crossing edge of the cut c depicted in Figure 11. Generally speaking,
cuts (V1, V2) and (V2, V1) have different sets of crossing edges.

LEMMA 9.11. For each c = (V1, V2), if e /∈ Cross(c) and out(e) ∩ V2 6= ∅, then
in(e) ∩ V2 6= ∅.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 P. Naumov and J. Tao

PROOF. Suppose that in(e)∩V2 = ∅. Then, in(e) ⊆ V1. Thus, we have out(e)∩V2 6= ∅
and in(e) ⊆ V1. Therefore, e ∈ Cross(c) by Definition 9.10.

LEMMA 9.12. If c = (A∗F , V \ A∗F), then Cross(c) ∩ F = ∅, for each set of vertices
A ⊆ V and each set of edges F ⊆ E.

PROOF. Suppose that there is an edge e ∈ F such that e ∈ Cross(c). Thus, in(e) ⊆
A∗F and out(e) ∩ (V \ A∗F) 6= ∅, by Definition 9.10. By Lemma 8.5, there is k ≥ 0 such
that A∗F = Ak

F . Hence, in(e) ⊆ Ak
F . Thus, out(e) ⊆ Ak+1

F by Definition 8.3. Therefore, by
Definition 8.4, out(e) ⊆ A∗F , which yields a contradiction with out(e)∩ (V \A∗F) 6= ∅.

The next definition specifies the core construction in the proof of the completeness
by introducing the notion of a cut-limited inverted tree rooted at a vertex v. Informally,
such a tree starts at vertex v and grows through the edges and vertices of the hyper-
graph. The tree is inverted because it grows in the direction against that of the edges.
From each vertex, the tree branches into each edge that has this vertex as a head.
From each edge, the tree expands through only one of the tail vertices. Furthermore,
if the edge is a crossing edge of the cut, then the tree does not expand from this edge
at all. The tree can potentially loop through the hypergraph and be infinite. Figure 12
shows a cut-limited inverted tree rooted at vertex m. Note that this tree is inverted as
it expands in the direction opposite to the direction of the edges. The tree is limited by
cut (V1, V2) and, thus, it does not continue through the crossing edge r of this cut. The
tree branches at vertex d and continues through edges r, s, and t of which vertex d is a
head. Since the tree does not branch at edges, edge y can only expand either through
tail h or through tail k. The inverted tree depicted in Figure 12 expands through tail
h.

h

f
e

u

d

m

c

y

r

b

a

V1 V2

s

t

x
g

w

v

k

z

i j

Fig. 12. A cut-limited inverted tree rooted at vertex m.

The next definition specifies the notion of a cut-limited inverted tree. We formally
represent tree as a collection of paths.

Definition 9.13. For any cut c = (V1, V2), c-limited inverted tree rooted at vertex
v ∈ V2 is any minimal set of paths T such that

(1) 〈v〉 ∈ T ,
(2) for each vertex-initiated path 〈v0, e1, v1, e2, . . . , en, vn〉 ∈ T and edge e0 ∈ E such

that v0 ∈ out(e0), we have 〈e0, v0, e1, v1, e2, . . . , en, vn〉 ∈ T ,

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:21

(3) for each edge-initiated path 〈e1, v1, e2, . . . , en, vn〉 ∈ T if e1 /∈ Cross(c) then there is
exactly one v0 ∈ in(e1) ∩ V2 such that 〈v0, e1, v1, e2, . . . , en, vn〉 ∈ T .

Because set T in the above definition is required to be a minimal set satisfying the
given conditions, all paths in this set terminate with the vertex v at which the tree is
“rooted”.

LEMMA 9.14. For any cut c = (V1, V2) and any v ∈ V2 there is a c-limited inverted
tree rooted at vertex v.

PROOF. We recursively construct an infinite sequence of sets of paths T0, T1, T2, . . . ,
whose vertices are all in set V2, as follows:

(1) T0 = {〈v〉}.
(2) For each k ≥ 0, let

T2k+1 = {〈e, v1, e1, . . . , vn, en, v〉 | 〈v1, e1, . . . , vn, en, v〉 ∈ T2k, v1 ∈ out(e)}.
(3) For each path π = 〈e0, v1, e1, . . . , vn, en, v〉 ∈ T2k+1 such that e0 /∈ Cross(c), choose

any vertex u ∈ in(e0) ∩ V2. Since v1 ∈ out(e0) ∩ V2, such vertex u exists by
Lemma 9.11. Construct a path 〈u, e0, v1, e1, . . . , vn, en, v〉. Let T2k+2 be the set of
all paths constructed in such a way, taking only one path (and only one vertex u)
for each path π.

Let T =
⋃

i≥0 Ti.

LEMMA 9.15. For any cut c = (V1, V2), any c-limited inverted tree T rooted at vertex
v ∈ V2, and any π ∈ T , all vertices in path π belong to set V2.

PROOF. The statement of the lemma follows from condition 3 of Definition 9.13 and
the minimality condition on T of the same definition.

The next lemma shows that two vectors can agree on a large set of secrets while not
being equal on all secrets.

LEMMA 9.16. For any vector 〈fa〉a∈A ∈ L, any cut c = (V1, V2), and any b ∈ V2, there
is a vector 〈f ′a〉a∈A ∈ L such that

(1) f ′u = fu for each u ∈ V1,
(2) f ′e = fe for each e ∈ E \ Cross(c),
(3) f ′b 6= fb.

PROOF. By Lemma 9.14, there exists a c-limited inverted tree T rooted at vertex
b ∈ V2. Define vector 〈f ′a〉a∈A as follows:

f ′a(π) =

1 + fa(π), if a ∈ V and π ∈ T ,
1 + fa(π), if a ∈ Cross(c) and π ∈ T ,
fa(π), otherwise,

(mod 2), (15)

where π is a path initiated at a. Note that (mod 2) above is a part of = statement and
thus applies to all three cases.

Next, we prove that 〈f ′a〉a∈A ∈ L and that vector 〈f ′a〉a∈A satisfies conditions (1), (2),
and (3) from the statement of the lemma. We state and prove these four facts as Claim
1, Claim 2, Claim 3, and Claim 4 below.

CLAIM 1. 〈f ′a〉a∈A ∈ L.

PROOF. We need to show that vector 〈f ′a〉a∈A satisfies equation (14) of Definition 9.5
for each edge-initiated path. There are three cases that we consider separately:

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 P. Naumov and J. Tao

v2 vnv1

u0

e1 e2 . . .
u1

u2

e3

Fig. 13. Case I

Case I: path 〈e1, v1, e2, . . . , en, vn〉 does not belong to tree T . In this case, by Defini-
tion 9.13, path 〈v1, e2, . . . , en, vn〉 does not belong to tree T either. Neither do paths
〈u, e1, v1, e2, . . . , en, vn〉 for each u ∈ in(e1). Thus, according to (15),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) (mod 2).

Since 〈fa〉a∈A ∈ L, by Definition 9.5,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).

At the same time, since path 〈v1, e2, . . . , en, vn〉 does not belong to tree T , by (15), we
have fv1(〈v1, e2, . . . , en, vn〉) = f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2). Therefore,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

vnv1 v2

u0
V1 V2

e1 e2 . . .
u1

u2

Fig. 14. Case II

Case II: path 〈e1, v1, e2, . . . , en, vn〉 belongs to tree T and e1 ∈ Cross(c). It follows from
Definition 9.13 that path 〈v1, e2, . . . , en, vn〉 belongs to tree T as well and that path
〈u, e1, v1, e2, . . . , en, vn〉 does not belong to tree T for each u ∈ in(e1). Hence, by (15),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + 1 +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) (mod 2).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:23

Since 〈fa〉a∈A ∈ L, by Definition 9.5,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).

At the same time, since path 〈v1, e2, . . . , en, vn〉 belongs to tree T , by (15) we have
f ′v1(〈v1, e2, . . . , en, vn〉) = fv1(〈v1, e2, . . . , en, vn〉) + 1 (mod 2). Therefore,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) + 1 = f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

vnv1 v2

u0
V1 V2

e1 e2 . . .
u1

u2

Fig. 15. Case III

Case III: path 〈e1, v1, e2, . . . , en, vn〉 belongs to tree T and and e1 /∈ Cross(c). It follows
from Definition 9.13 that path 〈v1, e2, . . . , en, vn〉 belongs to tree T as well and that
there is a unique u0 ∈ in(e1)∩V2 such that path 〈u0, e1, v1, e2, . . . , en, vn〉 belongs to tree
T . Hence, by (15),

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′e1(〈e1, v1, e2, . . . , en, vn〉) + f ′u0
(〈u0, e1, v1, e2, . . . , en, vn〉) +∑

u∈in(e1)\{u0}

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + (fu0
(〈u0, e1, v1, e2, . . . , en, vn〉) + 1) +∑

u∈in(e1)\{u0}

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fe1(〈e1, v1, e2, . . . , en, vn〉) + 1 +∑
u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉) (mod 2).

Since 〈fa〉a∈A ∈ L, by Definition 9.5,

fe1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

fu(〈u, e1, v1, e2, . . . , en, vn〉)

= fv1(〈v1, e2, . . . , en, vn〉) (mod 2).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 P. Naumov and J. Tao

At the same time, f ′v1(〈v1, e2, . . . , en, vn〉) = fv1(〈v1, e2, . . . , en, vn〉) + 1 (mod 2) by (15)
since path 〈v1, e2, . . . , en, vn〉 belongs to tree T ,

f ′e1(〈e1, v1, e2, . . . , en, vn〉) +
∑

u∈in(e1)

f ′u(〈u, e1, v1, e2, . . . , en, vn〉)

= f ′v1(〈v1, e2, . . . , en, vn〉) (mod 2).

This concludes the proof of the claim.

CLAIM 2. f ′u = fu for each u ∈ V1.

PROOF. Consider any vertex u ∈ V1. Recall from Definition 9.4 that the domain of
function fu is the set of all paths starting at vertex u. By Lemma 9.15, none of these
paths belongs to tree T . Therefore, f ′u = fu due to (15).

CLAIM 3. f ′e = fe for each e ∈ E \ Cross(c).

PROOF. The statement of the claim follows from (15).

CLAIM 4. f ′b 6= fb.

PROOF. By Definition 9.13, the single-element path 〈b〉 belongs to tree T . Thus,
f ′b(〈b〉) = 1 + fb(〈b〉) (mod 2) due to (15). Therefore, f ′b 6= fb.

This concludes the proof of the lemma.

LEMMA 9.17. H A �p B if and only if IH � A �p B, for each A,B ⊆ V and each
non-negative real number p.

PROOF. (⇒). Suppose that H A �p B. Then, by Definition 8.7, there is a subset
F ⊆ E such that w(F) ≤ p and B ⊆ A∗F . By Definition 9.1, inequality w(F) ≤ p implies
that ‖F‖ ≤ p. Thus, by Definition 5.6, it suffices to show that for any two vectors
`1, `2 ∈ L, if `1 =A,F `2, then `1 =B `2, which, in turn, follows from statement B ⊆ A∗F
and Lemma 9.9.
(⇐). Assume that IH � A�pB. Thus, by Definition 5.6, there is F ⊆ A = V ∪E such that
‖F‖ ≤ p and for all `1, `2 ∈ L, if `1 =A,F `2, then `1 =B `2. Note that, by Definition 9.1,
‖F‖ ≤ p implies that F ⊆ E and w(F) ≤ p. Suppose now that H 1 A �p B. Thus,
B * A∗F , by Definition 8.7. Hence, there is b ∈ B such that b /∈ A∗F . To finish the proof
of the lemma, it suffices to construct `1, `2 ∈ L such that `1 =A,F `2 and `1 6=b `2.
Consider cut c = (A∗F , V \ A∗F). Let `1 be vector 0 ∈ L. By Lemma 9.16, there is vector
`2 such that `1 =A∗

F ,E\Cross(c) `2, and `1 6=b `2. Note that A ⊆ A∗F by Definition 8.4 and
Definition 8.3. Thus, `1 =A,E\Cross(c) `2. By Lemma 9.12, we have Cross(c)∩F = ∅. In
other words, F ⊆ E \ Cross(c). Therefore, `1 =A,F `2.

LEMMA 9.18. H ψ if and only if IH � ψ, for each ψ ∈ Φ(V).

PROOF. We prove the lemma by induction on the structural complexity of formula ψ.
The base case is shown in Lemma 9.17. The induction step follows from the induction
hypothesis, Definition 8.7, and Definition 5.6.

In the preceding part of this section, given any hypergraph H, we constructed a cor-
responding informational model IH and proved properties of this informational model.
Next, we finish the proof of the completeness theorem for the informational semantics
stated earlier as Theorem 7.1. Assume that 0 ϕ. By Theorem 8.8, there is a hypergraph
H = 〈V,E, in, out, w〉 such that ϕ ∈ Φ(V) and H 1 ϕ. Therefore, IH 2 ϕ by Lemma 9.18.
This concludes the proof of Theorem 7.1.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:25

10. COMPLETENESS THEOREM FOR THE FINITE COST INFORMATIONAL SEMANTICS
In the previous section, we have shown the completeness of our logical system with
respect to the informational semantics. In Definition 5.3, we introduced the notion of
a finite cost informational model as a model in which each secret has a finite cost.
In this section we prove the completeness of our logical system with respect to the
class of finite cost models. This is achieved by showing how any (potentially infinite)
informational model could be converted to a finite cost model through the construction
described below.

Definition 10.1. For any non-negative real number r and any informational model
I = 〈A, {Da}a∈A, ‖ · ‖,L〉, let Ir be tuple 〈A, {Da}a∈A, ‖ · ‖r,L〉, where

‖c‖r =

{
‖c‖, if ‖c‖ ≤ r,
r, otherwise.

for each secret c ∈ A.

COROLLARY 10.2. For any non-negative real number r and any informational
model I, tuple Ir is a finite cost informational model.

COROLLARY 10.3. ‖c‖r ≤ ‖c‖, for each non-negative real number r, each informa-
tional model I = 〈A, {Da}a∈A, ‖ · ‖,L〉, and each secret c ∈ A.

Definition 10.4. For any ϕ ∈ Φ(A), let rank(ϕ) be defined recursively as follows:

(1) rank(A�p B) = p,
(2) rank(¬ψ) = rank(ψ),
(3) rank(ψ → χ) = max(rank(ψ), rank(χ)).

LEMMA 10.5. If rank(ϕ) < r, then Ir � ϕ if and only if I � ϕ.

PROOF. We prove the lemma by induction on the structural complexity of formula ϕ.
The inductive step immediately follows from Definition 5.6. Now, suppose that formula
ϕ has form A�p B.
(⇒) If Ir � A�p B, then, by Definition 5.6, there is a set C ⊆ A such that (i) ‖C‖r ≤ p
and (ii) for each `1, `2 ∈ L if `1 =A,C `2, then `1 =B `2. From condition (i), Defini-
tion 10.4, and assumption rank(ϕ) < r of the lemma,

‖C‖r ≤ p = rank(ϕ) < r. (16)

Hence, ‖c‖r ≤ ‖C‖r < r for each c ∈ C, by Definition 5.5. Thus, by Definition 10.1, we
have ‖c‖ = ‖c‖r. Then, by Definition 5.5 and the first inequality in statement (16),

‖C‖ =
∑
c∈C
‖c‖ =

∑
c∈C
‖c‖r = ‖C‖r ≤ p.

By Definition 5.6, the inequality ‖C‖ ≤ p together with condition (ii) above implies
that I � A�p B.
(⇐) If I � A �p B, then, by Definition 5.6, there is a set C ⊆ A such that (iii) ‖C‖ ≤ p
and (iv) for each `1, `2 ∈ L if `1 =A,C `2, then `1 =B `2. By Definition 5.5, Corollary 10.3,
and again Definition 5.5,

‖C‖r =
∑
c∈C
‖c‖r ≤

∑
c∈C
‖c‖ = ‖C‖.

This along with condition (iii) implies that ‖C‖r ≤ p. Therefore, by Definition 5.6 and
condition (iv), we have Ir � A�p B.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 P. Naumov and J. Tao

We next state and prove the completeness theorem for the class of finite cost infor-
mational models.

THEOREM 10.6. If I � ϕ for each finite cost informational model I = 〈A, {Da}a∈A, ‖·
‖,L〉 such that ϕ ∈ Φ(A), then ` ϕ.

PROOF. Suppose that 0 ϕ. Thus, by Theorem 7.1, there is an informational model
I = 〈A, {Da}a∈A, ‖·‖,L〉 such that I 2 ϕ. Pick any r such that rank(ϕ) < r. Then, Ir 2 ϕ
by Lemma 10.5.

11. CONCLUSION
In this article we have introduced a notion of budget-constrained dependency that gen-
eralizes the notion of functional dependency previously studied by Armstrong [1974].
We propose a sound and complete axiomatization that captures the properties of the
budget-constrained dependency. Although the axioms of our system are generaliza-
tions of Armstrong’s original axioms, the proof of the completeness for our system is
significantly more complicated than Armstrong’s counterpart.

REFERENCES
Natasha Alechina and Brian Logan. 2002. Ascribing beliefs to resource bounded agents. In Proceedings of the

First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002),
Vol. 2. ACM Press, Bologna, 881–888.

Natasha Alechina, Brian Logan, Hoang Nga Nguyen, and Abdur Rakib. 2011. Logic for coalitions with
bounded resources. Journal of Logic and Computation 21, 6 (December 2011), 907–937.

Natasha Alechina, Brian Logan, and Mark Whitsey. 2004. A Complete and Decidable Logic for Resource-
Bounded Agents. In Proceedings of the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2004), Nicholas R. Jennings, Charles Sierra, Liz Sonenberg, and Milind
Tambe (Eds.). ACM Press, New York, 606–613.

W. W. Armstrong. 1974. Dependency structures of data base relationships. In Information Processing 74
(Proc. IFIP Congress, Stockholm, 1974). North-Holland, Amsterdam, 580–583.

Catriel Beeri, Ronald Fagin, and John H. Howard. 1977. A complete axiomatization for functional and
multivalued dependencies in database relations. In SIGMOD ’77: Proceedings of the 1977 ACM
SIGMOD international conference on Management of data. ACM, New York, NY, USA, 47–61.
DOI:http://dx.doi.org/10.1145/509404.509414

Radim Bělohlávek and Vilém Vychodil. 2006. Data tables with similarity relations: functional dependencies,
complete rules and non-redundant bases. In Database Systems for Advanced Applications. Springer,
644–658.

Claude Berge. 1989. Hypergraphs. North-Holland Mathematical Library, Vol. 45. North-Holland Publishing
Co., Amsterdam. x+255 pages. Combinatorics of finite sets, Translated from the French.

Nils Bulling and Berndt Farwer. 2010. Expressing properties of resource-bounded systems: The logics RTL*
and RTL. In Computational Logic in Multi-Agent Systems. Springer, 22–45.

Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. 2009. Database Systems: The Complete Book
(second ed.). Prentice-Hall.

Jean-Yves Girard. 1987. Linear Logic. Theoretical computer science 50 (1987), 1–102.
S. Hartmann, S. Link, and K.D. Schewe. 2004. Weak functional dependencies in higher-order datamodels.

In International Symposium on Foundations of Information and Knowledge Systems. Springer, Berlin
Heidelberg, 116–133.

Zachary Heckle and Pavel Naumov. 2014. Common Knowledge Semantics of Armstrong’s Axioms. In Pro-
ceedings of 21st Workshop on Logic, Language, Information and Computation (WoLLIC), September 1st
to 4th, 2014, Valparaiso, Chile. Springer, 181–194.

Wojciech Jamroga and Masoud Tabatabaei. 2013. Accumulative Knowledge under Bounded Resources. In
Computational Logic in Multi-Agent Systems, João Leite, Tran Cao Son, Paolo Torroni, Leon van der
Torre, and Stefan Woltran (Eds.). Lecture Notes in Computer Science, Vol. 8143. Springer Berlin Hei-
delberg, 206–222.

Jonathan Katz. 2010. Digital Signatures. Springer Science & Business Media.
Pavel Naumov and Brittany Nicholls. 2014. Rationally Functional Dependence. Journal of Philosophical

Logic 43, 2-3 (2014), 603–616.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Information Flow under Budget Constraints 39:27

Pavel Naumov and Jia Tao. 2015. Budget-Constrained Knowledge in Multiagent Systems. In Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 219–226.

Pavel Naumov and Jia Tao. 2016a. Information Flow Under Budget Constraints. In European Conference on
Logics in Artificial Intelligence (JELIA). Springer, 353–368.

Pavel Naumov and Jia Tao. 2016b. Price of Privacy. In 12th Conference on Logic and the Foundations of
Game and Decision Theory (LOFT), Maastricht, the Netherlands.

Jouko Väänänen. 2007. Dependence logic: A new approach to independence friendly logic. Vol. 70. Cambridge
University Press.

Jouko Väänänen. 2017. The logic of approximate dependence. In Rohit Parikh on Logic, Language and
Society. Springer, 227–234.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39, Publication date: March 2010.

	Vassar College
	Digital Window @ Vassar
	Winter 2-26-2018

	Information Flow under Budget Constraints
	Pavel Naumov
	Jia Tao
	Citation Information

	tmp.1519684313.pdf.OkNtE

