Endocranial shape asymmetries in Hylobates lar

By

Soumik Saha

Thesis Advisors:

Dr. Zachary Cofran and Dr. Louis Phillipe Römer

A senior thesis submitted to the Department of Anthropology at

Vassar College for the partial fulfillment of the requirements for the

degree of Bachelors of Arts with Honors in Anthropology

Vassar College

Poughkeepsie, New York

December 2022

Table of Contents

Abstract	2
Introduction	3
Material and Methods	9
Results	15
Discussion	18
Tables	21
Figures	26
Supplementary Materials	30
Acknowledgements	31
References	32

Abstract

Asymmetries in brain shape, or petalias, is the extension of one cerebral hemisphere beyond the other. In humans, anatomical asymmetry of the brain has been linked to handedness and cognitive functions. Previous research has demonstrated brain shape asymmetries in hominids with a pattern of fluctuating asymmetry. However, non-human great apes show lower variation and a lower degree of fluctuating asymmetry compared to modern humans. This study describes and quantifies the positions of the frontal and occipital petalias of a sample of Hylobates lar using 3d models of the cranium and endocranial cavity. Cranial landmarks were used to create a reference system onto which endocast landmarks were projected and the difference between the right and left projections produced the petalial components. This study shows the existence of frontal and occipital petalia in gibbons, and comparison to published literature on the brain shape asymmetry in hominids shows that gibbons have an antisymmetric endocast shape as opposed to the fluctuating asymmetry in hominids. This study also shows that the Broca's area homologue in gibbons does not have the same right asymmetry that is observed in humans and to a lesser extent non-human great apes. This has evolutionary implications indicating that the Yakovlevian anticlockwise torque is unique to great apes, and that the gibbons do not have the same language area functions as humans and other great apes do.

Introduction

Asymmetry in the structure and function of the brain has been observed in both animals and humans. In fact, most biological systems have some level of asymmetry. This is caused by normal variation and specialization of systems (Baianu 2012). In humans and many animals, the two hemispheres of the brain are different anatomically as well as in their function. A careful inspection of the brain reveals asymmetric features between the two hemispheres. This lateralized specialization is thought to be a result of evolutionary and developmental factors (Molfese and Segalowits 1988).

Asymmetries in brain shape, or petalias, is the extension of one cerebral hemisphere beyond the other. In humans, characteristic petalia pattern involves right frontal and left occipital protrusions. The right hemisphere protrudes anteriorly beyond the left (right frontal petalia) and the left hemisphere extends posteriorly beyond the right (left occipital petalia). Along with the petalia, the left occipital lobe often extends across the midline, causing the longitudinal interhemispheric fissure to bend towards the right. This double asymmetry produces the appearance of an anticlockwise twist, hence it is referred to as Yakovlevian anticlockwise torque (LeMay 1976). This specific pattern of lobar asymmetry is typical of the hominin lineage, which includes humans and their ancestors after the evolutionary split from the last common with chimpanzees and bonobos (Holloway 1981; Holloway and de la Costela-Reymondie 1982). It has been observed to be more common in right-handed individuals (LeMay 1976; Kertesz et al. 1986).

One of the earliest discoveries of brain asymmetry was regarding language functions of the brain (Broca 1861; Wernicke 1874). In humans, language functions are specialized in the left

hemisphere, resulting in marked volume asymmetry in the Broca's area and Wernicke's area. In patients impacted by strokes or tumors in the left hemisphere, language abilities were found to be more severely impaired compared to those with ailments in the right hemisphere. Language processing and production is localized to the anterior left hemisphere in the pars triangularis (Brodmann area (BA) 44) and pars opercularis (BA 45) of the inferior frontal girus – this area is called the Broca's area. Wernicke's area, on the other hand, is specialized in language comprehension and is associated with BA 21 and 22 in the posterior temporal-parietal region (Cantalupo and Hopkins 2001).

Damage to either language areas results in aphasia, but of different kinds. An injury to the Broca's area results in expressive or non-fluent aphasia. This is characterized by difficulty in speaking fluently, but the comprehension of speech is relatively preserved. Individuals with Broca's aphasia have difficulty in producing grammatically correct sentences and understanding complex grammatical structures, but can still communicate through short utterances ("Broca's (Expressive) Aphasia." 2022). An injury to Wernicke's area causes receptive or fluent aphasia. The ease of producing connected speech is not very affected, but the ability to grasp the meaning of spoken words and sentences is highly impaired. As a result, individuals with Wernicke's aphasia can produce grammatically correct sentences but often without much meaning. This also applies to writing, and individuals usually are not aware that they may be using the wrong or non-existent words ("Wernicke's (Receptive) Aphasia." 2022).

Language areas are also evident in non-human great apes. According to Cantalupo and Hopkins (2001), the three great ape species *Pan troglodytes*, *Pan paniscus* and *Gorilla gorilla* have a homologue of Brodmann's area 44 and in the inferior frontal gyrus, and also have cytoarchitectural and neuroanatomical asymmetries in the substrates showing left hemisphere dominance. In gibbons, the Broca's area homologue has been identified (Shenker 2007), but there has not been neuroanatomical research on the asymmetry in their Broca's area (Figure 1). As such, there is space for further investigation into the Broca's area of gibbons.

This study focuses on observing any asymmetries produced in the region that has been identified as the Broca's area homologue in gibbons. The study of Broca's area in gibbons is particularly interesting, since they have an extraordinarily high diversity in distinctive loud calls which is not common among primates (Geissmann and Orgeldinger 2000). Gibbon vocalizations, or 'songs' are species and sex specific, and have sequential organized structures. Such complex vocal communications are not found in any other apes except humans (Koda 2016). Therefore, gibbons are an excellent species for studies on Broca's area outside of the great apes.

Outside of the Broca's area, there has also been significant research on the asymmetry of the brains of non-human primates. LeMay, Billig, and Geschwind (1982) reported that the different great ape species' endocasts showed asymmetry resembling those of humans; Cercopithecoids (also known as Old World monkeys) showed asymmetry in occipital protrusion on the left side; and Platyrrhines (also known as New World monkeys) showed no significant asymmetry in protrusions. In a small sample of 9 chimpanzees (*Pan troglodytes*), right frontal and left occipital asymmetry was found by Hopkins and Marino (2000), but they detected no asymmetry in cerebral width of Cercopithecoids. On the other hand, Zilles et al. (1996) reported no statistically significant shape asymmetry from a similar sized sample of chimpanzee brains. In a sample of capuchin monkeys (*Cebus apella*), which is a type of Platyrrhine, Phillips and Sherwood (2007) found statistically significant left frontal asymmetry, which is the opposite of that observed in great apes and humans. Falk et al. (1990) reported statistically significant left frontal asymmetry in a large sample of rhesus macaques (*Macaca mulatta*), which is a

Cercopithecoid. More recent research on great apes has revealed that there is a shared pattern of endocranial asymmetry among great apes, modern humans, and fossil hominins (Balzeau, Gilissen, and Grimaud-Hervé 2012). However, the pattern was also found to be more variable in humans than in great apes (Neubauer et al. 2020). Overall, there is a pattern of anterior right hemisphere and posterior left hemisphere asymmetry in humans. This has also been observed in other great apes, but to a lesser variability. In other primates, there has been research showing a variety of asymmetry, but there is no consensus on the patterns of asymmetry outside of the great apes.

One confounding factor of the earlier studies on endocranial asymmetries measured the asymmetries using a variety of methods including observation of brain samples (Holloway and de la Costela-Reymondie 1982), to brain mapping techniques based on computed tomography (CT) and magnetic resonance imaginge (MRI) scanning (LeMay and Kido 1978; Toga and Thompson 2003). Furthermore, studies quantifying petalial asymmetries often used the midsagittal plane of the brain as a geometric midline. However, the existence of a left occipital asymmetry may distort the actual fissure delineating the two hemispheres. Petalial protrusions may make it difficult to identify the midline of the brain and introduce errors to the study. Hopkins and Marino (2000) defined the midline of the brain using landmarks at the interhemispheric fissure at the frontal and occipital poles, and then joining the landmarks with a straight line. This method was further detailed by Balzeau and Gilissen (2010) by using landmarks not only on the endocranial surface, but also on anatomical points of the cranium itself. The most protruding points on the right and left frontal and occipital lobes were projected onto the midplane of the brain as determined by cranial landmarks, and their differences were defined as petalias. Neubauer et al. (2020) on the other hand, used geometric morphometrics and multivariate statistics to avoid specifying the anatomical midplane of the brain. In light of these methodological differences, the present study adopts the methodology detailed by Balzeau and Gilissen (2010) and uses landmarks on both the cranial and endocranial surface. This will provide a reference onto which the endocranial landmarks can be projected and different components of petalia can be measured. As such the results are comparable to previous work on great apes (Balzeau and Gilissen 2010) and humans and fossil hominins (Balzeau, Gilissen, and Grimaud-Hervé 2012).

As detailed above, petalias have been previously studied in many non-human primates, humans, as well as fossil hominins (LeMay 1976; Holloway and de la Costela-Reymondie 1982; LeMay, Billig, and Geschwind 1982; Falk et al. 1990; Balzeau and Gilissen 2010; Balzeau, Gilissen, and Grimaud-Hervé 2012; Balzeau, Ball-Albessard, and Kubicka 2020; Neubauer et al. 2020). However, there is not much research on the brains of gibbons (*Hylobatidae*). Gibbons are the closest evolutionary relatives to hominids, but their endocranial asymmetries are relatively unexplored. Moreover, their calls are highly diverse and distinctive. Commonly referred to as gibbon 'songs', they are analogous to bird sings, in that they are specific to species and to sex. However, the evolution and neuroanatomical backing of gibbon songs is not well understood. Gibbons also co-sing in mother-daughter female specific pairs, and have a specialized form of formant tuning - the only other primate species this is seen in is humans (Koda 2016). Thus, the language areas of gibbon brains are a novel study area that may produce better understanding of the evolution of gibbon songs, and how it compares to the language areas in great apes and humans.

The present confirms the presence of petalias in Lar gibbons (*Hylobates lar*), and quantifies the distribution of the different components of petalia, anteroposterior, vertical, and

lateral, in both the frontal and occipital cortex using a sample of 25 Lar gibbon crania in a developmental series from infant to adult. It thus investigates the relationships between these antero-posterior protrusions and the spatial location of the frontal and occipital poles on the two lateral and vertical axes. To further explore the asymmetry in language areas of gibbon brains, this study pursues an observatory analysis of the Broca's area homologue of the gibbon brain. Since gibbons are the closest relatives to great apes, this provides to opportunity to test whether language areas of brain are an ancient cytoarchitectural brain structure that are ancestral to both gibbons and great apes, or if it evolved in the great apes clade and then was further derived in the hominin clade.

Material and methods

The sample used in this study consists of a total of 25 crania of Lar gibbons from the Museum of Comparative Zoology at Harvard University (MCZ). The specimens were collected during the 1937 Asiatic Primate Expedition to present day northern Thailand, specifically from Inthanon Doi (Mount Angka) in Chiang Mai province. The specimens are all wild individuals and are of a variety of ages ranging from infant to adult. The sex of each specimen is known: there are 13 males and 12 females in the sample. Computed tomography (CT) scans of the specimen were generated and then used to produce virtual endocasts of the specimens using a combination of two- and three-dimensional semi-automated segmentation in Avizo software, based on procedures described by Neubauer, Gunz, and Hublin (2009).

First, the cranial bone was defined as a material by setting a gray value range. The foramen magnum was sealed through manual segmentation. At this point, any noticeable artifacts from the CT scan were minimized and any damage to the crania from the capture of the specimens was corrected. Then the three-dimensional segmented bone area was artificially expanded by adding a selected number of voxel layers on the cranial surface. This number varied based on the requirements of the specific specimen, until a cranium with thickened bone but closed small foramina and sutures was produced. This delimited the endocranial cavity completely, and an endocast was produced from it. The endocast was allowed to grow in three dimensions to the same number of voxel layers as the cranial bone altered earlier, so that the endocranial surface matches with the inner surface of the unmodified crania. Finally, further manual corrections were done to rectify any non-exact matches to the inner surface of the cranium.

In order to compare the two hemispheres of the endocast and ascertain asymmetries, landmarks were placed on the endocast and cranium following Balzeau and Gilissen (2010). The cranial landmarks were used as a reference system not influenced by the endocranial cavity shape. While the midsagittal plane can be used as the reference to which the endocast landmarks are projected, this would not account for irregularities in the interhemispheric fissure that separates the two hemispheres. Petalial protrusions may cause the interhemispheric fissure to not follow a medial straight line on the endocranial surface. In humans for example, the left occipital lobe often extends across the midline, causing the interhemispheric fissure to bend towards the right (Holloway 1981). Brain torque influences the midsagittal plane, so if the medial plane of the endocast were to be used to quantify petalia, it would influence the data. So, cranial landmarks were used instead to define an external reference system.

The endocasts produced from CT scans were aligned with the cranium in Avizo, and 7 landmarks were registered (figure 2). On the cranium, the glabella, inion, and basion of each specimen was registered. The glabella is the most anterior midline point on the frontal bone, between the brow ridges or supraorbital tori. The inion is the projecting part of the occipital bone at the midline of the uppermost extensions of the superior nuchal lines. This was not particularly visible in some of the younger specimens, so an approximation of the most posterior point of the occipital bone was used in unclear specimens. The basion is the midpoint of the anterior border of the foramen magnum. These three landmarks formed the basis for the reference system onto which the petalial landmarks were projected. Landmarks were then placed on the most protruding points on the right and left frontal lobes, and the right and left occipital lobes on the endocast. During placement of these landmarks, the endocast was visualized in different positions. It was viewed in a superior, lateral, and anterior or posterior view to precisely define the most protruding point of each lobe.

To describe the variation in the four cranial landmarks, the different components of their spatial location were considered separately. The antero-posterior component of the petalia was determined by considering which one of the right or left most protruding points on the frontal or occipital lobe is located more anteriorly or posteriorly than the other; the lateral component was determined by which one has a more lateral position; and the vertical component was determined by which one is located superior to the other. The components were measured by projecting the endocast landmarks onto the cranial reference. First, the coordinates of two lines and a plane were calculated using the cranial landmarks. The first line (L1) passes through the glabella (G) and the inion (I); the second line (L2) passes through the basion (B) and is orthogonal to L1; the plane is defined by L1 and L2. The four endocast landmarks were first projected orthogonally onto L1. The difference between the projection of the right and left frontal and occipital points gives the antero-posterior component of the frontal and occipital petalias, respectively. The four endocast landmarks were then orthogonally projected onto L2, and the distances between the projections gave the vertical component of the frontal and occipital petalias. Finally, the endocast landmarks were orthogonally projected onto the plane defined by L1 and L2; the difference between the projections produced the lateral component of the frontal and occipital petalias (Figure 3). The differences were calculated such that a positive value indicated a right asymmetry and a negative value indicated a left asymmetry. Therefore, a positive value indicates that the right point is more anterior, lateral, or superior to the left point. In the case of the occipital petalia, a negative value indicates that the left point is more posterior than the right. The

calculations to project the landmarks onto lines and planes were conducted in Microsoft Excel (See supplementary materials 1 and 2).

The usage of cranial and endocast landmarks allowed the quantification of endocranial asymmetries using an unbiased reference system. The sample had a large age range since it is a developmental series from infant to adult. While this study did not explore the ontogeny of asymmetry in gibbons, the age range does need to be accounted for. Therefore, a size-correction index was used to standardize the different components of the petalia. The values for asymmetry (mm) were divided by the cubic root of the endocranial volume ($\sqrt[3]{mm^3}$), and then multiplied by 100 to obtain a normalized value to be used in statistical analyses. The sample was also divided into male, female, and all, to analyze the six measured endocranial asymmetry components in terms of the sex of the specimen.

The recorded data were analyzed using multiple statistical procedures, which were all conducted in Microsoft Excel. To find any statistical outliers a two-tailed Grubbs' statistical test was conducted. The Grubbs' test detects a single outlier in a univariate data set that follows an approximately normal distribution. So if any of the specimen's petalia components are drastically different from the rest, it should be detected by Grubbs' test (Table 1).

The relationship between the petalia magnitude and the endocranial size was investigated using parametric linear regression (Table 2) and non-parametric Spearman coefficient of rank correlation (Table 3). Values for kurtosis and skewness were also calculated using Microsoft Excel. The kurtosis and skewness were analyzed together to detect asymmetry in the sample (Table 4). Skewness is a measurement of the distortion of symmetrical distribution in a dataset. Kurtosis, on the other hand, is a measure of the tailedness of a distribution - i.e. how often outliers occur in the sample. A standard normal distribution has a kurtosis of 3 and is called mesokurtic. Leptokurtic and platykurtic distributions have positive and negative excess kurtosis, respectively. Therefore, leptokurtic distributions have a relatively high probability of extreme events, whereas the opposite is true for platykurtic distributions. The kurtosis values were compared to separate critical values for platykurtosis and leptokurtosis taken from Palmer and Strobeck (2003, table 5, values for equation 7).

Three different types of asymmetry were tested for: directional asymmetry, absolute asymmetry, and FA4a. Signed or directional asymmetry (DA) was obtained by calculating the difference between the right and left side for each petalia in an individual (R - L). A positive DA value indicates a right petalia while a negative value indicates a left petalia. Absolute asymmetry (FA1) was calculated by taking the absolute value of the difference between the two petalia in an individual (|R - L|). Finally, FA4a was also calculated, using the formula $0.798\sqrt{var(R - L)}$ (Bechshøft et al. 2008). This value estimates the variability of the specific petalial component within a sample (Table 5). In a sample with fluctuating asymmetry, the variation is normally distributed with mean of (R - L) being zero. Antisymmetry can be detected by statistical tests for departures of frequency distributions of (R-L) from normality in the direction of platykurtosis.

In order to observe the Broca's area in the endocasts, the endocast meshes were imported to Artec Studio software. Each mesh was duplicated to produce two copies of the endocast, then the copy was mirrored by transforming it by 180° on the x-axis. The two mirrored endocasts were then aligned, and a distance map with error-margin of 3 mm was produced (Figure 4). The inferior frontal gyrus in the anterior left hemisphere contains the Broca's area in humans. In gibbons Brodmann's areas 44 and 45 have been identified to a similar region (Schenker 2007). The corresponding sections of the endocast distance maps were observed and the measured distance difference between the right and left side of the endocrania were measured using the distance maps. The direction of the asymmetry as well as any outliers were noted.

Results

To minimize measurement error, all the landmarks were placed by the same person, and the calculations were cross-checked with Geomagic software. Specimens that had damaged crania were not included in the sample. To determine whether any individuals show outlier values for their petalia components, a two-tailed Grubbs' test statistic was conducted. The Grubbs' test detects a single outlier in a univariate data set that follows an approximately normal distribution. Based on the two-tailed Grubbs' test on the six asymmetries quantified in this study, none of the specimens meet the statistical criteria for outlier status. This ensured that there were no statistical outliers in the sample that could cause a disproportionate impact on the statistical results, leading to misleading interpretations (Table 1).

Next, the relationship between the different petalial components and endocranial volume was investigated. The size corrected data was divided into male, female, and all, and all six measured components of petalia were analyzed using parametric linear regression(Table 2) and non-parametric Spearman rank correlation (Table 3). Of these, the anterior-posterior occipital component in females was found to be correlated with endocranial volume (significant, 0.05 < p < 0.01) for the Spearman test. None of the other components showed significant correlation in the Spearman test, or in the regression test. However, a non-significant negative correlation was found between antero-posterior occipital, vertical frontal, vertical occipital, and lateral occipital components of all specimens and endocranial capacity, from parametric linear regression. Similarly, a non-significant negative correlation was found between antero-posterior frontal, antero-posterior occipital, and vertical frontal components of all specimen and endocranial capacity, from non-parametric Spearman test. These suggest that with larger endocranial capacity, the proportional asymmetry of the endocranial surface may decrease. Although, since

the results are non-significant (p > 0.05), this is only a hypothesis that needs to be further investigated. Nevertheless, the lack of concrete correlation between petalial components and endocranial volume indicates variability in the sample.

The asymmetry in the petalial components was measured by investigating three possible patterns of departure from symmetry in a sample: fluctuating asymmetry (FA), directional asymmetry (DA), and antisymmetry (Table 5). The frontal antero-posterior and frontal vertical petalia components showed a right hemisphere asymmetry, as shown by the positive values for directional asymmetry. The frontal lateral and occipital antero-posterior petalial components showed left hemisphere asymmetry, shown by the negative values for directional asymmetry. The occipital vertical and occipital lateral components show directional asymmetry close to zero. The mean absolute asymmetry of the frontal antero-posterior and frontal vertical petalia components are, however, smaller than that of the other four components. This indicates that while these components showed a right hemisphere asymmetry, the degree of asymmetry was higher in the other components. Also, the occipital vertical and occipital lateral components had comparatively high values for absolute asymmetry, which indicates that while they did not show directional asymmetry, the petalia components were still highly variable. This variation was further shown by the FA4a metric that was calculated. FA4a estimates the variability of the specific petalial component within a sample. This was lower in frontal antero-posterior and occipital antero-posterior components of petalia. This indicates that these components had less variability within the sample.

The frequency distribution of size-corrected asymmetry components are shown as histograms in figure 5. Most of the petalia components showed fairly normal distributions, although the antero-posterior occipital and the vertical frontal components were fairly flat. The frontal antero-posterior, occipital antero-posterior, and occipital lateral components show a negative tail. The kurtosis and skewness values obtained are shown in Table 4. The kurtosis values for each component were negative in the full sample for all petalial components except the frontal lateral component. By comparing the p-values to cutoffs obtained from Palmer and Strobeck (2003, table 5, values for equation 7), it was determined that the only occipital vertical and occipital lateral were statistically significantly platykurtic (p < 0.05). While the other petalial components were not statistically significantly platykurtic, they were still negative, which provides evidence for platykurtic distribution of the sample, indicating an antisymmetric variation in the endocranial surface of the sample of gibbons.

The observation of the Broca's area homologue on the mirrored endocranial distance maps produced variable results. There were 12 specimens with negative distance in the Broca's area homologue as determined by the distance map, indicating a more pronounced right anterior hemisphere; 8 specimens had positive distance, indicating more pronounced left anterior hemisphere, and 6 specimens had negligible difference between the two sides with distance values close to zero. The small sample size, difficulty in identifying Brodmann's areas 44 and 45 on gibbons, as well as artifacts caused by mirroring the endocast may have contributed to the inconclusive results.

Discussion

Shape asymmetries of the internal table of the cranial vault can be considered as any other standard cranial parameter used for assessing taxonomic distinctiveness. Importantly, the shape of the endocranial cast is commonly used as a proxy for brain shape, as it is in this study. Compared with qualitative assessments of petalial asymmetries, the quantification used in this study to characterize endocranial petalias makes the study repeatable. It also allows further exploration of the morphometric information contained in the analyzed features. Moreover, the use of an external referential, means that the protocol is not influenced by endocranial asymmetries, as it is the case for most previous studies (Balzeau and Gilissen 2010). As such the results are comparable to previous work on great apes (Balzeau and Gilissen 2010) and humans and fossil hominins (Balzeau, Gilissen, and Grimaud-Hervé 2012). Finally, the analysis of "petalias" is based on their original definition: the protrusions of one hemisphere beyond the other (Hadžiselimović and Čuš 1966). Using this unambiguous definition and consistent designation of the analyzed features, along with protocols aimed at detecting and analyzing the different main asymmetry patterns, this study attempts to determine subtle departures from symmetry in Hylobates lar.

The first results from the analysis include the parametric linear regression analysis (Table 2) and the non-parametric Spearman rank correlation analysis (Table 3). Of these, the anterior-posterior occipital component in females was found to be correlated with endocranial volume (significant, 0.05) for the Spearman test. None of the other components showed significant correlation in the Spearman test, or in the regression test. Both the regression and Spearman test analysis showed negative correlation between petalial components and endocranial volume, but it was not statistically significant (p > 0.05). This indicates that the size

corrected petalial components are negatively correlated to endocranial capacity. This has developmental implications for asymmetry in *Hylobates lar*. As the brain size increases, the relative size of the petalia decreases, therefore, the petalial components may remain relatively the same size while the rest of the brain increases in size. However, without more concrete statistically significant evidence, as well as statistical analysis based on developmental stage, this is only a hypothesis. This question may be an interesting topic in *Hylobates lar* endocranial asymmetry for further research.

Next, it emerges from the analysis conducted in this study that the frontal antero-posterior and frontal vertical petalia components show a right hemisphere asymmetry, the frontal lateral and occipital antero-posterior petalial components showed left hemisphere asymmetry, and the occipital vertical and occipital lateral components show directional asymmetry close to zero (Table 5). This indicates that there is a variety of different asymmetries in the *Hylobates lar* petalial components and there is no perceivable directional pattern in the asymmetry. However, in the case of occipital vertical and occipital lateral components, the mean absolute asymmetry (FA1 index) and the FA4a index was comparatively higher than that for other petalia components. These specific components of petalia therefore had even less variability than the other components. However, this still does not show any directional asymmetry in *Hylobates lar*. The frequency distribution histograms (figure 5) also show the lack of any pattern of direction asymmetry.

The final statistical analysis conducted was the skewness and kurtosis analysis. The kurtosis values for each component were negative in the full sample for all petalial components except the frontal lateral component, and they were statistically significantly platykurtic (p < 0.05) for the occipital vertical and occipital lateral components. This provides strong evidence

for the platykurtic distribution of the petalial components. Platykurtosis indicates that the distributions have a relatively low probability of extreme outliers, rather their distribution is more centered around zero. Also, platykurtic distribution indicates antisymmetric variation in the sample (Palmer 1994). This is markedly different from the fluctuating asymmetry that was determined in great apes (Balzeau, Gilissen, and Grimaud-Hervé 2012). The difference in asymmetry between gibbon and great ape brains indicates that Yakovlevian anticlockwise torque is unique to great apes. This specific type of asymmetry may have allowed hominin brains to become encephalized and develop language and tool related functions.

Finally, the observation of the Broca's area homologue in *Hylobates lar* through distance maps produced by mirroring endocrania produced showed 12 specimens with larger Broca's area homologue on the right hemisphere, 8 specimens with more pronounced left hemisphere Broca's area homologue, and 6 specimens that showed negligible difference between the two sides. While this sample does show more pronounced cytoarchitecture on the right side Broca's area homologue, the sample size is relatively small and there was no statistically significant difference between the two sides. This therefore indicates that gibbons do not have the same language area functions as humans and other great apes do. This brings forth further questions about gibbon vocalization. Are their vocalizations then simply instinctual and not as neuroanatomically elaborate as they may seem to be? It is also possible that gibbons simply have a different area of the brain that is specialized in producing their unique vocal repertoire. Further research into this topic will improve our understanding of gibbon endocranial asymmetry as well as their distinctive vocalization.

Tables

Table 1. Grubb's statistical analysis of six components of petalia in *Hylobates lar*, showing that there are no statistically significant outliers to the data.

	Antero- posterior frontal	Antero- posterior occipital	Vertical frontal	Vertical occipital	Lateral frontal	Lateral occipital
max of Grubb's value	2.07	2.29	2.44	3.40	2.09	2.54
mean of petalia conponent	0.47	-0.43	0.61	0.11	-0.96	0.09
stdev	0.74	1.12	2.32	4.22	3.29	4.71
G	2.81	2.05	1.05	0.81	0.63	0.54
alpha	0.05	0.05	0.05	0.05	0.05	0.05
size	25	25	25	25	25	25
sig value	0.001	0.001	0.001	0.001	0.001	0.001
df	23	23	23	23	23	23
t-crit	3.48	3.48	3.48	3.48	3.48	3.48
G-crit	2.82	2.82	2.82	2.82	2.82	2.82
significant	no	no	no	no	no	no

	Antero- posterior frontal	Antero- posterior occipital	Vertical frontal	Vertical occipital	Lateral frontal	Lateral occipital
Correlation factor (M)	0.35	0.07	-0.14	-0.14	0.46	-0.18
Correlation factor (F)	0.04	-0.32	-0.29	-0.23	-0.20	-0.17
Correlation factor (All)	0.18	-0.11	-0.19	-0.17	0.13	-0.17
T value (M)	1.25	0.23	-0.46	-0.48	1.74	-0.61
T value (F)	0.13	-1.08	-0.97	-0.75	-0.64	-0.56
T value (All)	0.89	-0.53	-0.92	-0.83	0.65	-0.83
df (M)	11	11	11	11	11	11
df (F)	10	10	10	10	10	10
df (All)	23	23	23	23	23	23
p-value (M)	0.24	0.82	0.66	0.64	0.11	0.55
p-value (F)	0.90	0.30	0.35	0.47	0.54	0.59
p-value (All)	0.38	0.60	0.37	0.42	0.52	0.41

Table 2. Regression analysis of size-corrected components of petalia in Hylobates lar

	Antero- posterior frontal	Antero- posterior occipital	Vertical frontal	Vertical occipital	Lateral frontal	Lateral occipital
Spearman coefficient (F)	-0.34	-0.68	-0.33	-0.28	-0.28	0.11
Spearman coefficient (M)	-0.01	0.32	-0.03	0.35	0.38	0.35
Spearman coefficient (All)	-0.16	-0.19	-0.15	0.09	0.06	0.22
T statistic (F)	1.15	2.97	1.12	0.92	0.93	0.34
T statistic (M)	0.03	1.12	0.08	1.24	1.36	1.26
T statistic (All)	0.77	0.90	0.74	0.44	0.30	1.09
df (F)	10	10	10	10	10	10
df (M)	11	11	11	11	11	11
df (All)	23	23	23	23	23	23
p-value (F)	0.28	0.01	0.29	0.38	0.38	0.74
p-value (M)	0.98	0.28	0.93	0.24	0.20	0.23
p-value (All)	0.45	0.37	0.47	0.66	0.77	0.29

Table 3. Spearman correlation analysis of size-corrected components of petalia in Hylobates lar

Т	rait	Sex	N	Kurtosis	Kurtosis p-value	Skewness
Frontal	AP	M	13	-1.20742	ns	-0.4428
		F	12	0.23	ns	0.97
		All	25	-0.08	ns	-0.07
	VERT	M	13	-0.44	ns	0.90
		F	12	-0.61	ns	-1.09
		All	25	-0.28	ns	0.34
	LAT	M	13	0.31	ns	0.49
		F	12	0.78	ns	0.02
		All	25	0.93	ns	0.30
Occipital	AP	м	13	0.51	ns	0.09
		F	12	0.13	ns	-0.56
		All	25	-0.94	ns	-0.22
	VERT	M	13	-1.48	*	1.77
		F	12	-1.50	*	-0.90
		All	25	-1.53	*	1.36
	LAT	M	13	-1.40	*	-0.39
		F	12	-1.54	*	-1.26
		All	25	-1.45	*	-0.52

Table 4. Kurtosis and skewness indices of size-corrected components of petalia in Hylobates lar

				DA =	(R -L)	FA1 =	<mark>R-L </mark>	FA4a = 0.798(var(R- L))^1/2
Trait		Sex	N	Mean	SE	Mean	SE	
Frontal	AP	М	13	0.25	0.11	0.42	0.07	0.07
		F	12	0.21	0.08	0.25	0.06	0.03
		All	25	0.23	0.07	0.34	0.05	0.05
	VERT	М	13	0.20	0.26	0.94	0.15	0.63
		F	12	0.33	0.35	0.76	0.23	0.32
		All	25	0.26	0.22	0.85	0.14	0.46
	LAT	Μ	13	-0.98	0.48	1.34	0.34	0.83
		F	12	0.00	0.40	1.13	0.30	1.09
		All	25	-0.51	0.32	1.24	0.22	1.02
Occipital	AP	М	13	-0.32	0.14	0.50	0.10	0.12
		F	12	-0.10	0.15	0.34	0.10	0.09
		All	25	-0.21	0.10	0.42	0.07	0.11
	VERT	М	13	0.45	0.44	1.44	0.32	2.09
		F	12	-0.43	0.63	1.08	0.50	0.93
		All	25	0.03	0.39	1.27	0.30	1.55
	LAT	М	13	0.08	0.48	1.92	0.35	2.87
		F	12	-0.01	0.74	1.07	0.49	1.09
		All	25	0.04	0.44	1.52	0.31	1.93

Table 5. Indices of asymmetry in size-corrected components of petalia in Hylobates lar

Figures

Figure 1. Digital image of the Broca's area homologue in gibbons. Adapted from Schenker (2007).

Figure 2. Illustration of the landmarks placed on *Hylobates lar* cranium and endocranium. A: 3D model of *Hylobates lar* cranium. B: Endocast produced from the cranium shown through a semi-transparent cranium. C: Semi-transparent cranium and endocranium showing the positions of the seven landmarks. Three landmarks are positioned on the skull (glabella, basion, inion) and four on the endocranial surface (RFP, LFP: right and left frontal poles, ROP, LOP: right and left occipital poles).

Figure 3. Illustration of the protocol used to quantify the endocranial petalias in *Hylobates lar* endocranium. A: Lateral view showing a line (L1) traced through glabella and inion, and another line (L2) traced through basion orthogonal to L1. B: Superior view showing L1 traced through the glabella and inion. C: Zoomed in superior view showing the orthogonal projection of the right and left occipital poles onto L1. The distance between the projected images of the points corresponds to the occipital antero-posterior component of petalia. D: Posterior view showing a plane that passes through the glabella (not visible), inion, and basion, and the orthogonal distance from the right and left occipital poles to this plane. The difference between the two distances corresponds to the occipital lateral component of petalia. E: Anterior view showing a plane that passes through the glabella, inion (not visible), and basion, and the orthogonal distance from the

right and left frontal poles to this plane. The difference between the two distances corresponds to the frontal lateral component of petalia.

Figure 4. Distance map of *Hylobates lar* brain compared to the Broca's area homologue in gibbons. A: Digital image of the Broca's area homologue in gibbons. Adapted from Schenker (2007). B: Distance map of *Hylobates lar* showing blue color and negative in the Broca's area homologue, indicating that the region is more pronounced on the right hemisphere.

Figure 5. Frequency distribution histograms of petalia components in *Hylobates lar*. The y-axis represents the frequency, while the x-axis represents size-corrected (R-L) petalia. A: Anteroposterior frontal petalia frequency distribution. B: Lateral frontal petalia frequency distribution. C: Vertical frontal petalia frequency distribution. D: Antero-posterior occipital petalia frequency distribution. E: Lateral occipital petalia frequency distribution. F: Vertical occipital petalia frequency distribution.

Supplemental Materials

Supplemental Material 1: Dataset and statistics is a Microsoft Excel sheet that

contains the dataset that was obtained from the sample of *Hylobates lar* (n=25), and the statistical analysis that was performed on it. The following table of contents shows the specifics of each sheet in the Excel file. Please see

Sheet number	Title	Contents
2	Data Collection	Landmarks from each individual; calculations done to produce petalial components from landmarks
3	Data Compression	Petalial components; Size correction of petalial components
4	Grubbs test	Size corrected petalial components sorted in ascending order; Grubbs test calculations
5	Spearman Correlation	Spearman correlation calculations
6	Regression	Linear regression calculations
7	Asymmetry	Directional asymmetry, Absolute asymmetry, FA4a, Kurtosis, Skewness

Supplemental Material 2: Calculations is a pdf file containing the vector projection calculation that was done to calculate the components of petalia from the seven landmark coordinates. Please see both supplemental materials attached to this thesis.

Acknowledgements

I would like to thank Professor Zachary Cofran for his imperative assistance in the formation of this thesis. His digitization of Lar gibbon crania from the Museum of Comparative Zoology at Harvard University (MCZ) made this research possible. His help in developing the methodology was indispensable. I would also like to thank Professor Louis Phillipe Römer for his assistance in improving the clarity of the writing.

References

Baianu, I. 2012. "On Asymmetry in Biology and Nature." *Nature Precedings*: 1-1. https://doi.org/10.1038/npre.2012.7134.1.

Balzeau, Antoine, and Emmanuel Gilissen. 2010. "Endocranial Shape Asymmetries in Pan Paniscus, Pan Troglodytes and Gorilla Gorilla Assessed via Skull Based Landmark Analysis." *Journal of Human Evolution* 59 (1): 54–69. https://doi.org/10.1016/j.jhevol.2010.03.013.

Balzeau, Antoine, Emmanuel Gilissen, and Dominique Grimaud-Hervé. 2012. "Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins." *PloS one* 7 (1): e29581. https://doi.org/10.1371/journal.pone.0029581.

Balzeau, Antoine, Lou Ball-Albessard, and Anna Maria Kubicka. 2020. "Variation and correlations in departures from symmetry of brain torque, humeral morphology and handedness in an archaeological sample of Homo sapiens." *Symmetry* 12 (3): 432. https://doi.org/10.3390/sym12030432.

Bechshøft, Thea Ø., Frank F. Rigét, Øystein Wiig, and Christian Sonne. 2008. "Fluctuating asymmetry in metric traits; a practical example of calculating asymmetry, measurement error, and repeatability." *Annales Zoologici Fennici* 45 (1): 32-38. Finnish Zoological and Botanical Publishing Board, 2008.

Broca, Pierre Paul. 1861. "Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole)." *Bulletin de la Société Anthropologique* 6: 330–357.

"Broca's (Expressive) Aphasia." 2022. National Aphasia Association. March 29, 2022. https://www.aphasia.org/aphasia-resources/brocas-aphasia/.

Cantalupo, Claudio, and William D. Hopkins. 2001. "Asymmetric Broca's area in great apes." *Nature* 414: 505-505. <u>https://doi.org/10.1038/35107134</u>.

Geissmann, Thomas, and Mathias Orgeldinger. 2000. "The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus." *Animal Behaviour* 60 (6): 805-809. <u>https://doi.org/10.1006/anbe.2000.1540</u>.

Hadžiselimović, H., and M. Čuš. 1966. "The appearance of internal structures of the brain in relation to configuration of the human skull." *Cells Tissues Organs* 63 (3): 289-299.

Holloway, Ralph L. 1981. "Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel Ihroud I, and the Salé Homo erectus specimens, with some notes on neandertal brain size." *American Journal of Physical Anthropology* 55 (3): 385-393. <u>https://doi.org/10.1002/ajpa.1330550312</u>.

Holloway, Ralph L., and Marie Christine de la Costela-Reymondie. 1982. "Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance." *American Journal of Physical Anthropology* 58 (1): 101-110. <u>https://doi.org/10.1002/ajpa.1330580111</u>.

Hopkins, William D., and Lori Marino. 2000. "Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI)." *Neuropsychologia* 38 (4): 493-499.

Kertesz, Andrew, Sandra E. Black, Marsha Polk, and Janice Howell. 1986. "Cerebral Asymmetries on Magnetic Resonance Imaging." *Cortex* 22 (1): 117–27. https://doi.org/10.1016/S0010-9452(86)80036-3.

Koda, Hiroki. 2016. "Gibbon songs: Understanding the evolution and development of this unique form of vocal communication." In *Evolution of gibbons and siamang* edited by Ulrich H. Reichard, Hirohisa Hirai, and Claudia Barelli, 349-359. Springer, New York. https://doi.org/10.1007/978-1-4939-5614-2_15.

LeMay, Marjorie. 1976. "Morphological Cerebral Asymmetries of Modern Man, Fossil Man, and Nonhuman Primate." *Annals of the New York Academy of Sciences* 280: 349–66. <u>https://doi.org/10.1111/j.1749-6632.1976.tb25499.x</u>.

LeMay, Marjorie, and Daniel K. Kido. 1978. "Asymmetries of the cerebral hemispheres on computed tomograms." *Journal of computer assisted tomography* 2 (4): 471–476. https://doi.org/10.1097/00004728-197809000-00018. LeMay, Marjorie, Michael S. Billig, and Norman Geschwind. 1982. "Asymmetries of the brains and skulls of nonhuman primates." In *Primate brain evolution Methods and Concepts* edited by Este Armstrong and Dean Falk, 263-277. Boston: Springer. https://doi.org/10.1007/978-1-4684-4148-2_17.

Molfese, Dennis L., and Sidney J. Segalowitz. 1988. *Brain Lateralization in children: Developmental implications*. Guilford Press.

Neubauer, Simon, Philipp Gunz, and Jean-Jacques Hublin. 2009. "The pattern of endocranial ontogenetic shape changes in humans." *Journal of anatomy* 215 (3): 240-255. https://doi.org/10.1111/j.1469-7580.2009.01106.x.

Neubauer, Simon, Philipp Gunz, Nadia A. Scott, Jean-Jacques Hublin, and Philipp Mitteroecker. 2020. "Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes." *Science advances* 6 (7): eaax9935. <u>https://doi.org/10.1126/sciadv.aax9935</u>.

Palmer, A. Richard. 1994. "Fluctuating asymmetry analyses: a primer." In *Developmental instability: its origins and evolutionary implications* edited by Therese Ann Markow, 335-364. Kluwer Academic Publishers, Dordrecht.

Palmer, A. Richard, and Curtis Strobeck. 2003. "CH 17. Fluctuating asymmetry analyses revisited." In *Developmental Instability: Causes and Consequences* edited by Michal Polak, 279-319. Oxford University Press: Oxford.

Phillips, Kimberley A., and Chet C. Sherwood. 2007. "Cerebral petalias and their relationship to handedness in capuchin monkeys (Cebus apella)." *Neuropsychologia* 45 (10): 2398-2401. <u>https://doi.org/10.1016/j.neuropsychologia.2007.02.021</u>.

Schenker, Natalie Marie. 2007. "Comparative analysis of Broca's area in hominoids." PhD diss. University of California, San Diego. <u>https://escholarship.org/uc/item/7br1r08t</u>.

Toga, Arthur W., and Paul M. Thompson. 2003. "Mapping Brain Asymmetry." *Nature Reviews Neuroscience* 4 (1): 37–48. <u>https://doi.org/10.1038/nrn1009</u>.

Wernicke, Carl. 1874. Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Cohn und Welgert, Cohn und Welgert, Breslau.

"Wernicke's (Receptive) Aphasia." 2022. National Aphasia Association. March 29, 2022. https://www.aphasia.org/aphasia-resources/wernickes-aphasia/.

Zilles, Karl, Andreas Dabringhaus, Stefan Geyer, Katrin Amunts, Meishu Qü, Axel Schleicher, Emmanuel Gilissen, Gottfried Schlaug, and Helmut Steinmetz. 1996. "Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats." *Neuroscience & Biobehavioral Reviews* 20 (4): 593-605. <u>https://doi.org/10.1016/0149-7634(95)00072-0</u>. Supplementary Material 1: Dataset and statistics Endocranial shape asymmetries in *Hylobates lar* Soumik Saha

Table of Contents

Sheet number Title

- 2 Data Collection
- 3 Data Compression
- 4 Grubbs test
- 5 Spearman Correlation
- 6 Regression
- 7 Asymmetry

Contents

- Landmarks from each individual; calculations done to produce petalial components from landmarks
- Petalial components; Size correction of petalial components
- Size corrected petalial components sorted in ascending order; Grubbs test calculations
- Spearman correlation calculations
 - Linear regression calculations
 - Directional asymmetry, Absolute asymmetry, FA4a, Kurtosis, Skewness

2. Data Collection: Landmarks from each individual; calculations done to produce petalial components from landmarks

Id number Age category	Sex	Landmark	x	y 2	2	Vectors	x	y z	Scalars		Points	x	у	z	Components of patella (right+)	_
41413 Adult	М	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	36.12 42.0798 41.1166 35.24269 40.37419 31.81292	33.41112 107.337 78.50108 40.22145 40.13503 109.2187	47.67841 17.5182 7.3444 47.14362 46.44632 23.34929	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	5.9598 -0.877 4.2542 -4.307 13.987 4.9966	73.93 -30.2 6.81 -0.53 6.724 -1.23 75.81 -24.3 74.67 -24.8 45.09 -40.3	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.080241 0.087296 0.98472 0.990785 0.714421	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	36.59822 36.64027 41.98873 42.02488 40.37781	39.34301 39.86456 106.2074 106.6558 86.22531	45.25832 45.04554 17.97906 17.79613 26.13132	Antero-posterior frontal Antero-posterior occipital	0.564858 -0.48562
		Len Occipitar Pole (LOP)	30.10003	108.0771	22.87033	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.739 -5.874 -0.742 -9.304 8.9901	7.724 18.79 -38.3 39.8 -38.4 39.1 30.72 16 29.58 15.53	t (RFP) t (LFP) t (ROP) t (LOP)	1.104574 1.062076 1.318687 1.243154	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	40.30055 40.33194 40.14236 40.19817	87.03306 86.70479 88.68692 88.10348	28.09595 27.29753 32.11847 30.69943	Vertical frontal Vertical occipital	-0.86384 -1.53531
						N of Plain	-1622	89.68 -101	RFP to P LFP to P ROP to P LOP to P	1.282674 3.792818 9.974655 8.289941					Lateral frontal Lateral occipital	-2.51014 1.684713
41415 Adult	М	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	40.98746 40.0531 39.24331 44.9056 37.28817 46.24027 31.19457	80.10648 3.675181 27.65729 71.55902 71.46034 3.942779 3.134765	43.79057 27.09658 7.724082 47.55836 47.62912 35.98788 33.99495	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	-0.934 3.9181 -3.699 5.2528 -9.793 -1.744	-76.4 -16.7 -8.55 3.768 -8.65 3.839 -76.2 -7.8 -77 -9.8 -52.4 -36.1	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.095851 0.098053 0.971466 0.989287 0.753513	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	40.8979 40.89584 40.07976 40.06311 40.28341	72.78047 72.61218 5.85607 4.494015 22.51451	42.19043 42.15367 27.57292 27.27543 31.21143	Antero-posterior frontal Antero-posterior occipital	0.172272 -1.39427
						(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	1.0401 5.6623 -1.955 6.997 -8.049	-5.14 23.49 43.9 39.83 43.8 39.91 -23.7 28.26 -24.5 26.27	t (RFP) t (LFP) t (ROP) t (LOP)	1.235725 1.225791 1.369298 1.268636	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	40.52858 40.51825 40.66751 40.56281	21.30223 21.35332 20.61529 21.13298	36.74798 36.51467 39.88527 37.52098	Vertical frontal Vertical occipital	-0.23907 -2.42257
						N of Plain	1881	-4.58 -84.3	RFP to P LFP to P ROP to P LOP to P	3.766312 3.84639 5.782222 9.157156					Lateral frontal Lateral occipital	-0.08008 -3.37493
41422 Juv1	F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (KFP) Left Frontal Pole (LPP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	42.2244 53.5096 47.233 40.62262 46.48101 49.28024 58.85965	21.239 89.2038 59.5326 23.36444 22.44178 91.72563 88.597	43.112 20.8586 6.5936 44.72741 44.58296 26.02282 21.50965	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	11.285 -1.602 4.2566 7.0558 16.635 5.0086	67.96 -22.3 2.125 1.615 1.203 1.471 70.49 -17.1 67.36 -21.6 38.29 -36.5	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.017252 0.018515 1.001668 1.000887 0.662332	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	42.41909 42.43334 53.52843 53.5196 49.69894	22.41152 22.49734 89.31719 89.26406 66.25423	42.72809 42.69999 20.82147 20.83887 28.37287	Antero-posterior frontal Antero-posterior occipital	0.091424 0.056599
						(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	2.4659 -6.61 -0.752 2.0472 11.627	6.722 21.78 -36.2 38.13 -37.1 37.99 32.19 19.43 29.06 14.92	t (RFP) t (LFP) t (ROP) t (LOP)	1.086604 1.096305 1.226398 1.044318	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	49.9125 49.93643 50.25723 49.80823	66.83635 66.90156 67.77599 66.55212	30.25905 30.47032 33.30366 29.33809	Vertical frontal Vertical occipital	0.2224 -4.17435
						N of Plain	-1630	300.7 91.74	RFP to P LFP to P ROP to P LOP to P	2.047077 3.880409 4.89506 5.327163					Lateral frontal Lateral occipital	-1.83333 -0.4321
41425 Juv1	F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	28 31 30.35 30.3569 25.65917 35.94552 26.23639	75.25001 3.8 30.65 73.31259 73.16167 1.213867 1.068665	32.4 21.4 3.6 36.06291 35.38583 31.72629 30.32467	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	3 2.3569 -2.341 7.9455 -1.764 2.35	-71.5 -11 -1.94 3.663 -2.09 2.986 -74 -0.67 -74.2 -2.08 -44.6 -28.8	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.020096 0.020887 1.016433 1.015796 0.670573	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	28.06029 28.06266 31.0493 31.04739 30.01172	73.81412 73.75764 2.625887 2.671402 27.33754	32.17894 32.17024 21.21924 21.22625 25.02369	Antero-posterior frontal Antero-posterior occipital	0.057194 0.046092
						(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B N of Plain	-0.338 0.0069 -4.691 5.5955 -4.114	-3.31 21.42 42.66 32.46 42.51 31.79 -29.4 28.13 -29.6 26.72 60.55 34.11	t (RFP) t (LFP) t (ROP) t (LOP)	1.178899 1.152484 1.4853 1.42943 2.359444	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	29.9512 29.96014 29.84755 29.86645	26.74494 26.83244 25.73 25.91507	28.85637 28.29047 35.4206 34.22366	Vertical frontal Vertical occipital Lateral frontal	-0.57269 -1.21131 0.005227
									LFP to P ROP to P LOP to P	2.354218 5.065363 4.670317					Lateral occipital	0.395046
41428 Adult	М	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LPP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	41.5415 42.8197 40.7281 44.29755 39.05601 51.21281 40.14254	83.25697 4.706081 21.67122 75.04327 75.09295 4.3442 3.416656	56.0084 55.0207 29.1662 58.3561 58.7672 63.78574 62.87149	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	1.2782 2.7561 -2.485 9.6713 -1.399 -0.813	-78.6 -0.99 -8.21 2.348 -8.16 2.759 -78.9 7.777 -79.8 6.863 -61.6 -26.8	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.104716 0.102933 1.00494 1.014598 0.787819	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	41.67535 41.67307 42.82602 42.83836 42.54849	75.03143 75.1715 4.318002 3.559421 21.37311	55.90498 55.90674 55.01582 55.00628 55.23027	Antero-posterior frontal Antero-posterior occipital	-0.14011 -0.75874
						(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	1.8204 3.5695 -1.672 10.485 -0.586	-0.3 26.06 53.37 29.19 53.42 29.6 -17.3 34.62 -18.3 33.71	t (RFP) t (LFP) t (ROP) t (LOP)	1.10056 1.102257 1.357149 1.293135	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	42.73155 42.73464 43.19864 43.08211	21.34313 21.34262 21.26664 21.28572	57.85128 57.8955 64.53903 62.87056	Vertical frontal Vertical occipital	0.044335 -1.67264
						N of Plain	2047.7	35.11 -143	RFP to P LFP to P ROP to P LOP to P	2.44541 2.810414 7.756516 3.237741					Lateral frontal Lateral occipital	-0.365 4.518775
41431 Adult	М	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	52.76206 52.82909 54.03585 55.6829 48.60776 57.40632 44.69949	76.09267 53.6336 32.85058 64.8971 66.91628 23.69375 29.37326	50.48263 16.82754 50.2815 53.72418 51.91574 29.6188 26.7425	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	0.067 2.9208 -4.154 4.6443 -8.063 1.2738	-22.5 -33.7 -11.2 3.242 -9.18 1.433 -52.4 -20.9 -46.7 -23.7 -43.2 -0.2	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.087072 0.096259 1.147969 1.128662 0.597425	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	52.76789 52.76851 52.83901 52.83772 52.80211	74.13712 73.93078 50.31036 50.74396 62.67507	47.55223 47.24303 11.84763 12.4974 30.37625	Antero-posterior frontal Antero-posterior occipital	0.371725 0.781156
						(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-1.234 1.647 -5.428 3.3705 -9.336	29.82 -19.9 32.05 3.443 34.07 1.634 -9.16 -20.7 -3.48 -23.5	t (RFP) t (LFP) t (ROP) t (LOP)	0.687681 0.76921 0.10413 0.292377	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	53.18743 53.08684 53.90738 53.67514	53.36032 55.79188 35.9562 41.57056	36.59303 34.97018 48.20877 44.46167	Vertical frontal Vertical occipital	2.925101 6.753946
						N of Plain	-1451	-42.9 25.71	RFP to P LFP to P ROP to P LOP to P	2.531183 4.448118 3.464077 9.016601					Lateral frontal Lateral occipital	-1.91693 -5.55252
41437 Juv2	F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	52.75111 52.62815 52.62815 55.23281 49.86016 58.59532 47.08107	74.33111 6.947407 34.49111 70.56201 70.18019 3.030228 3.143694	46.97169 14.38662 4.979983 48.00166 48.14362 21.13024 20.93502	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	-0.123 2.4817 -2.891 5.8442 -5.669 -0.123	-67.4 -32.6 -3.77 1.03 -4.15 1.172 -71.3 -25.8 -71.2 -26 -39.8 -42	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.039289 0.043173 1.007761 1.007784 0.723424	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	52.74628 52.74581 52.6272 52.62719 52.66216	71.6837 71.42193 6.424453 6.422874 25.58413	45.69147 45.56489 14.13373 14.13297 23.39887	Antero-posterior frontal Antero-posterior occipital	0.290764 -0.00175
		· · · · · · · · · · · · · · · · · · ·				(L2)d=B onto L1 - B RFP-B LFP-B ROP-B	0.034 2.6047 -2.768 5.9672	-8.91 18.42 36.07 43.02 35.69 43.16 -31.5 16.15	t (RFP) t (LFP) t (ROP) t (LOP)	1.125723 1.139657 1.38057 1.368631	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	52.66644 52.66691 52.6751 52.6747	24.46432 24.34021 22.19441 22.30075	25.71455 25.97121 30.40855 30.18865	Vertical frontal Vertical occipital	0.285095 -0.24427

			LOP-B	-5.546 -31.3 15.96						
			N of Plain	1531.4 -1.16 -3.39	RFP to P LFP to P ROP to P LOP to P	2.482263 2.890406 5.955195 5.557791			Lateral frontal Lateral occipital	-0.40814 0.397404
41438 Juv2	F Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (NOP) Left Occipital Pole (NOP)	46.3182 16.796 36.1114 47.0288 85.40121 24.6126 47.4164 60.401 10.013 43.11498 19.23377 40.02059 49.30553 19.87642 41.50959 40.03917 89.1803 32.45345 53.32400 88.8488 32.3217	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	0.7106 68.61 -11.5 -3.203 2.438 3.909 2.9883 3.08 5.398 -6.279 72.38 -3.66 6.9159 72.05 -0.88 1.0982 43.61 -26.1	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.0248 0.031281 1.033917 1.024507 0.680334	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	46.33583 18.4974 35.82623 46.34043 18.94207 35.7517 47.0529 87.72809 24.2226 47.04622 87.08248 24.3308 46.80165 63.47047 28.28837	Antero-posterior frontal Antero-posterior occipital	0.450898 0.654649
	ten occipital Pole (LOP)	33.23409 <u>00.04400</u> 33.22017	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.615 3.069 18.28 -4.301 -41.2 30.01 1.8901 -40.5 31.5 -7.377 28.78 22.44 5.8177 28.44 25.22	t (RFP) t (LFP) t (ROP) t (LOP)	1.235301 1.309121 1.463049 1.58396	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	46.657 64.19272 32.58858 46.61161 64.41931 33.93767 46.51699 64.89179 36.75076 46.44266 65.26292 38.96046	Vertical frontal Vertical occipital	1.368735 2.24188
			N of Plain	-1289 5.918 -44.4	RFP to P LFP to P ROP to P LOP to P	3.078048 3.158029 6.733121 6.550809			Lateral frontal Lateral occipital	-0.07998 0.182312
41447 Adult	M Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	55.5444 26.7066 28.2384 56.0772 109.8234 25.4412 53.946 89.0442 56.1438 59.01508 35.44915 27.76178 52.22714 35.64061 27.90819 63.033 107.2314 25.18917 47.90417 1021 102 13.23128	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	0.5328 83.12 -2.8 3.4707 8.743 -0.48 -3.317 8.934 -0.33 7.4886 80.52 -3.05 -7.547 80.4 -6.42 -1.598 62.34 27.91	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.105521 0.107239 0.969489 0.968149 0.737712	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	55.60062 35.47715 27.94324 55.60154 35.62 27.93843 56.06095 107.2875 25.2655 56.06023 107.1761 25.5303 55.93745 88.02287 26.17487	Antero-posterior frontal Antero-posterior occipital	0.142936 0.111461
	ten occipital Pole (COP)	47.39717 107.103 21.62263	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	1.9915 -1.02 -30 5.0691 -53.6 -28.4 -1.719 -53.4 -28.2 9.087 18.19 -31 -5.949 18.06 -34.3	t (RFP) t (LFP) t (ROP) t (LOP)	1.013582 0.99354 1.026632 1.105328	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	55.9645 88.009 25.76784 55.92459 88.02947 26.36848 55.99049 87.99567 25.37675 56.14721 87.91529 23.01832	Vertical frontal Vertical occipital	-0.60231 2.364995
			N of Plain	2493.8 -10.4 166.1	RFP to P LFP to P ROP to P LOP to P	3.394943 3.369003 6.9344 8.291216			Lateral frontal Lateral occipital	0.02594 -1.35682
41461 Juv2	M Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	47.3171 23.79184 39.1867 52.58196 98.23297 25.59131 54.3147 72.70839 81.392718 46.04989 26.83451 38.2491 52.11977 27.15983 38.53453 46.65777 97.33313 29.24419 57.9562 97.23276 20.41498	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	5.2649 74.44 -13.6 -1.267 3.043 -0.94 4.8027 3.368 -0.65 -0.659 73.54 -9.94 10.488 73.54 -8.77 6.9976 48.92 -31	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.040419 0.049508 0.974307 0.981728 0.712467	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	47.5299 26.80071 38.63718 47.57775 27.47724 38.51362 52.44669 96.32037 25.94062 52.48576 96.87276 25.83973 51.06814 76.82867 29.50044	Antero-posterior frontal Antero-posterior occipital	0.689388 -0.56289
	Len occipital fore (LOF)	57.803 97.3277 30.4144	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-3.247 4.12 21.3 -8.265 -45.9 30.05 -2.195 -45.5 30.34 -7.657 24.62 21.05 3.4906 24.62 22.22	t (RFP) t (LFP) t (ROP) t (LOP)	0.993096 0.967573 1.193923 1.170704	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	51.09055 76.80022 29.35337 51.17341 76.69506 28.80965 50.43855 77.62769 33.63163 50.51394 77.53201 33.13698	Vertical frontal Vertical occipital	-0.55996 -0.50943
			N of Plain	-1642 68.02 -263	RFP to P LFP to P ROP to P LOP to P	1.522904 4.497217 5.229661 5.953805			Lateral frontal Lateral occipital	-2.97431 -0.72414
41462 Infant	F Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	40.54692 67.91141 41.60899 44.98272 9.059019 10.80834 45.48253 41.85892 5.87274 44.33475 63.30339 48.31 37.72583 62.6922 48.34197 50.48719 7.257629 14.84755	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	4.4358 -58.9 -30.8 3.7878 -4.61 6.701 -2.821 -5.22 6.733 9.9403 -60.7 -26.8 -0.047 -61.6 -27.3 4.9356 -26.1 -35.7	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.018412 0.019691 1.001359 1.007477 0.599248	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	40.62859 66.82784 41.0419 40.63427 66.75256 41.0025 44.98875 8.979047 10.76649 45.01589 8.618989 10.57805 43.20507 32.64422 23.15175	Antero-posterior frontal Antero-posterior occipital	0.085163 -0.40729
	ten occipital Pole (LOP)	40.30027 0.320369 14.31376	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-2.277 -9.21 17.28 -1.148 21.44 42.44 -7.757 20.83 42.47 5.0047 -34.6 8.975 -4.982 -35.5 8.447	t (RFP) t (LFP) t (ROP) t (LOP)	1.384967 1.439605 1.190028 1.247306	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	42.32832 29.09687 29.8036 42.20388 28.59339 30.7477 42.77228 30.89317 26.43525 42.64184 30.36537 27.42496	Vertical frontal Vertical occipital	1.077172 1.129212
			N of Plain	1300.7 6.499 174.9	RFP to P LFP to P ROP to P LOP to P	4.624205 1.924441 5.984686 3.988002			Lateral frontal Lateral occipital	2.699764 1.996684
41466 Infant	F Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	41.38678 65.81852 41.79888 42.85857 12.83402 7.535573 42.97631 41.15129 5.710551 43.05061 64.64492 43.0657 38.85555 64.24394 43.2812 47.24021 5.744659 14.56927	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	1.4718 -53 -34.3 1.6638 -1.17 1.267 -2.531 -1.57 1.439 5.8534 -60.1 -27.2 -3.651 -60.3 -28.4 1.5895 -24.7 -36.1	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.005329 0.007629 1.035415 1.04447 0.639093	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	41.39462 65.53619 41.61631 41.39801 65.41431 41.53749 42.91069 10.95755 6.322122 42.92402 10.4778 6.011879 42.32739 31.95649 19.90144	Antero-posterior frontal Antero-posterior occipital	0.14519 -0.57149
	Lett Occipital Pole (LOP)	37.73553 5.560303 13.39338	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.649 -9.19 14.19 0.0743 23.49 37.36 -4.121 23.09 37.53 4.2639 -35.4 8.859 -5.241 -35.6 7.683	t (RFP) t (LFP) t (ROP) t (LOP)	1.096696 1.127623 1.566294 1.535478	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	42.26464 31.06739 21.27364 42.24457 30.78302 21.71253 41.95991 26.74953 27.93765 41.97991 27.03288 27.50034	Vertical frontal Vertical occipital	0.523348 -0.52146
			N of Plain	1066.9 -1.35 47.92	RFP to P LFP to P ROP to P LOP to P	1.720469 2.462119 4.701737 4.845885			Lateral frontal Lateral occipital	-0.74165 -0.14415
41467 Juv2	M Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	52.947 74.99161 45.7542 46.8198 8.658001 15.1182 49.6836 35.0982 5.3946 54.49116 69.63638 49.92212 47.37236 69.15546 50.7322 52.90617 1.501404 28.92378 42.7288 2.178444 29.2076	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	-6.127 -66.3 -30.6 1.5442 -5.36 4.168 -5.575 -5.84 4.978 -0.041 -73.5 -16.8 -10.22 -72.8 -17.5 -3.263 -39.9 -40.4	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.040564 0.049995 1.002694 1.009781 0.725919	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	52.69846 72.30085 44.51148 52.64068 71.67529 44.22257 46.8033 8.479308 15.03567 46.75987 8.009191 14.81855 48.49915 26.83878 23.51494	Antero-posterior frontal Antero-posterior occipital	0.691479 -0.51965
	Lett Occipital Pole (LOP)	42.12888 2.178444 28.24958	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-1.184 -8.26 18.12 4.8076 34.54 44.53 -2.311 34.06 45.34 3.2226 -33.6 23.53 -6.955 -32.9 22.85	t (RFP) t (LFP) t (ROP) t (LOP)	1.296321 1.364374 1.759011 1.744553	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	48.14817 24.39133 28.88438 48.06757 23.82926 30.11753 47.60014 20.56978 37.26849 47.61726 20.6892 37.00649	Vertical frontal Vertical occipital	1.357597 -0.28844
			N of Plain	1455 -147 27.96	RFP to P LFP to P ROP to P LOP to P	2.155033 4.862347 7.038971 3.16578			Lateral frontal Lateral occipital	-2.70731 3.873191
41470 Infant	M Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	38.7612 13.1868 31.968 40.0932 76.32359 21.5784 41.1588 45.5544 3.0636 36.57051 14.43242 34.6518 41.4076 15.28484 35.7975 34.85292 76.3902 20.63061	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	1.332 63.14 -10.4 -2.191 1.246 2.684 2.6464 2.099 3.812 -3.908 63.2 -11.3 6.2169 63.2 -10.6 2.3976 32.37 -28.9	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.011681 0.023542 1.001727 1.003202 0.573023	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	38.77675 13.92427 31.84665 38.79255 14.67315 31.72341 40.0955 76.43261 21.56046 40.09746 76.52578 21.54513 39.52446 49.36561 26.01453	Antero-posterior frontal Antero-posterior occipital	0.759119 -0.09444
	Left Occipital Pole (LOP)	44.97805 76.3902 21.34694	(L2)d=B onto L1 - B	-1.634 3.811 22.95	t (RFP)	1.128549	RFP onto L2	39.31437 49.85554 28.96485	Vertical frontal	0.910411

			RFP-B LFP-B ROP-B LOP-B	-4.588 -31.1 31.59 0.2488 -30.3 32.72 -6.306 30.84 17.57 3.8193 30.84 18.28	t (LFP) t (ROP) t (LOP)	1.167585 0.976221 0.976023	LFP onto L2 ROP onto L2 LOP onto L2	39.25057 50.00432 29.8 39.56333 49.27499 25.4 39.56365 49.27423 25.4	5076 Vertical occipital 5877 5424	-0.0046
			N of Plain	-1489 13.59 -108	RFP to P LFP to P ROP to P LOP to P	2.001506 2.896702 5.295611 4.854394			Lateral frontal Lateral occipital	-0.8952 0.441218
41473 Juv2 F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	48.91709 20.39323 36.85442 49.18367 94.76853 28.12399 46.85111 66.84447 6.531164 46.33365 23.49463 40.367 52.00349 23.62345 40.09023 43.13831 95.12476 32.36168 5.7342476 94.09627 32.37518	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	0.2666 74.38 -8.73 -2.583 3.101 3.513 3.0864 3.23 3.236 -5.779 74.73 -4.49 4.8257 74.61 -5.07 -2.066 46.45 -30.3	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.035541 0.03795 0.99784 0.997577 0.663164	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	48.92656 23.0366 36.5 48.9272 23.21575 36.5 49.18309 94.60787 28.1 49.18302 94.58834 28.1 49.09387 69.71627 31.0	Antero-posterior frontal Antero-posterior occipital Antero-posterior occipital 1514 471	0.180386 0.019666
	Left Occipital Pole (LOP)	53.74278 94.99863 31.77973	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	2.2428 2.872 24.53 -0.517 -43.3 33.84 5.1524 -43.2 33.56 -3.713 28.28 25.83 6.8917 28.15 25.25	t (RFP) t (LFP) t (ROP) t (LOP)	1.145144 1.155378 1.148626 1.163489	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	49.4194 70.13309 34.6 49.4235 70.16248 34.3 49.42721 70.14309 34.7 49.46054 70.18578 35.0	2561 Vertical frontal 3767 Vertical occipital 102 2568	0.253838 0.368659
			N of Plain	-1850 26.12 166	RFP to P LFP to P ROP to P LOP to P	2.930461 2.739047 6.404394 4.210366			Lateral frontal Lateral occipital	0.191414 2.194028
41482 Infant F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (AFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	42.8944 71.38 33.6648 41.0352 6.2416 20.1856 42.164 29.6144 7.3704 46.15629 71.00441 35.55311 39.79471 71.08119 35.06905 45.87522 1.75989 31.94178 53.32665 1 7569 0.73029	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	-1.859 -65.1 -13.5 3.2619 -0.38 1.888 -3.1 -0.3 1.404 2.9808 -69.6 -1.72 -7.568 -69.6 -2.93 -0.73 -41.8 -26.3	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	-0.00159 0.001423 1.028109 1.036203 0.69472	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	42.89736 71.48374 33.6 42.89176 71.28735 33.6 40.98294 4.410655 19.8 40.96789 3.883426 19.6 41.60278 26.12704 24.3	 Antero-posterior frontal Antero-posterior occipital Antero-posteroccipital Antero-postericoccipital A	-0.01131 -0.53861
		30.7324	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.561 -3.49 16.93 3.9923 41.39 28.18 -2.369 41.47 27.7 3.7112 -27.9 24.57 -6.838 -27.9 23.37	t (RFP) t (LFP) t (ROP) t (LOP)	1.105142 1.088784 1.7086 1.66033	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	41.54377 25.76037 26.0 41.55295 25.81742 25.8 41.20509 23.65589 36.2 41.23219 23.82423 3	0599 Vertical frontal Vertical occipital 7722 5.48	-0.28291 -0.83482
			N of Plain	1149.8 -39 30.07	RFP to P LFP to P ROP to P LOP to P	3.320984 3.050019 5.294815 5.276095			Lateral frontal Lateral occipital	0.270965 0.01872
41488 Juv1 F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP)	42.496 74.03601 35.5904 43.82401 3.1872 35.4576 44.488 30.0792 11.288 44.9007 72.8703 37.02837 40.94941 72.99764 35.08939 50.76866 2.556702 34.40609 25 55770 34.4414	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.017045 0.014255 1.010761 1.008238 0.621381	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	42.51864 72.82842 35.5 42.51493 73.02605 35.5 43.8383 2.424829 35.4 43.83494 2.603566 35.4 43.3212 30.01193 35.5	Antero-posterior frontal Antero-posterior occipital Antero-posterior occipital 6611 7788	-0.19767 0.178769
		33.13/23 2.444014 33.00112	(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-1.167 -0.07 24.22 0.4127 42.79 25.74 -3.539 42.92 23.8 6.2807 -27.5 23.12 -9.331 -27.6 22.51	t (RFP) t (LFP) t (ROP) t (LOP)	1.054595 0.98255 0.942976 0.949049	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	43.2575 30.00826 36.8 43.34156 30.01311 35.0 43.38773 30.01577 34.1 43.38065 30.01536 34.2	016 Vertical frontal Vertical occipital 1677 1386	-1.74694 0.147254
			N of Plain	1716 32.01 82.76	RFP to P LFP to P ROP to P LOP to P	2.449081 1.587999 6.872997 8.748776			Lateral frontal Lateral occipital	0.861081 -1.87578
41497 Juv2 F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (LOP) Left Occipital Pole (LOP)	27.75475 48.4193 43.632 97.6264 59.87268 17.574 67.02346 56.84269 5.6358 33.53889 53.79105 48.05258 35.08302 46.7159 48.66842 98.07422 65.60741 26.50613 10.04.104 53.56537 24.28554	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	69.872 11.45 -26.1 5.7841 5.372 4.421 7.3283 -1.7 5.036 70.319 17.19 -17.1 72.656 5.146 -19.3 39.269 8.423 -38	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.061572 0.063471 0.976146 0.990758 0.672907	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	32.05685 49.12451 42.0 32.18954 49.14626 41.9 95.9597 59.59947 18.1 96.98068 59.76683 17.8 74.77185 56.12636 26.3	1757 Antero-posterior frontal 808 Antero-posterior occipital 5558 482 19974 1000	0.143271 -1.10244
			(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	7.7484 -0.72 20.46 -33.48 -3.05 42.42 -31.94 -10.1 43.03 31.051 8.765 20.87 33.387 -3.28 18.65	t (RFP) t (LFP) t (ROP) t (LOP)	1.274237 1.336074 1.380044 1.341004	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	76.89674 55.92991 31.7 77.37588 55.88562 32 77.71658 55.85412 33. 77.41408 55.88209 33.0	1873 Vertical frontal 1974 Vertical occipital 18737 1489	1.353684 -0.85463
			N of Plain	-215.7 1632 138.8	RFP to P LFP to P ROP to P LOP to P	4.922704 2.216506 6.357293 6.030347			Lateral frontal Lateral occipital	2.706198 0.326946
41499 Subadult M	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	57.821 77.318 39.865 57.017 3.35 25.996 54.471 27.001 3.953 60.29531 72.97014 42.09095 53.66499 72.5323 41.82602 65.15842 3.250053 33.22114 51.2125 2.467239 35.1088	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	-0.804 -74 -13.9 2.4743 -4.35 2.226 -4.156 -4.79 1.961 7.3374 -74.1 -6.64 -6.606 -74.9 -4.69 -3.35 -50.3 -35.9	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.050976 0.058284 0.982459 0.989886 0.745482	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	57.78001 73.5474 39.1 57.77414 73.00688 39.0 57.0311 4.647493 26.2 57.02513 4.098078 26.1 57.22163 22.17618 29.5	Antero-posterior frontal Antero-posterior occipital 1928 6626 5591	0.549971 -0.55902
			(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	2.7506 -4.82 25.57 5.8243 45.97 38.14 -0.806 45.53 37.87 10.687 -23.8 29.27 -3.256 -24.5 31.22	t (RFP) t (LFP) t (ROP) t (LOP)	1.123693 1.090254 1.30321 1.32553	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	57.56187 21.57938 32.6 57.46989 21.74072 31.8 58.05565 20.71324 37.2 58.11704 20.60556 37.8	Vertical frontal Vertical occipital V988 0066	-0.87508 0.584078
			N of Plain	1958.5 17.59 -207	RFP to P LFP to P ROP to P LOP to P	2.1873 4.381925 7.334344 6.743079			Lateral frontal Lateral occipital	-2.19463 0.591265
41529 Adult M	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	54.1458 77.72221 50.8824 56.4102 1.8648 21.7116 56.5434 31.7016 3.663 59.56208 70.71065 51.42988 51.1298 71.30076 49.75397 62.08267 3.037155 24.13795 50.37558 2.628731 2.422142	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G B-G	2.2644 -75.9 -29.2 5.4163 -7.01 0.547 -3.016 -6.42 -1.13 7.9369 -74.7 -26.7 -3.769 -75.1 -26.1 2.3976 -46 -47.2	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.0799 0.077635 0.977783 0.975444 0.737301	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	54.32673 71.66119 48.5 54.3216 71.83298 48.6 56.35989 3.550151 22. 56.3546 3.72759 22.4 55.81535 21.79248 29.3	5165 Antero-posterior frontal 1771 Antero-posterior occipital 5597 793 7474	-0.18413 0.19018
			(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.728 -9.91 25.71 3.0187 39.01 47.77 -5.414 39.6 46.09 5.5393 -28.7 20.47 -6.167 -29.1 21.16	t (RFP) t (LFP) t (ROP) t (LOP)	1.104778 1.04845 1.061382 1.101053	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	55.73906 20.75422 32.0 55.78007 21.31238 30.6 55.77066 21.18423 30.9 55.74177 20.79113 31	Vertical frontal Vertical occipital 298 .973	-1.55266 1.093531
			N of Plain	2239.5 36.98 77.67	RFP to P LFP to P ROP to P LOP to P	5.315558 3.158854 5.771722 5.908799			Lateral frontal Lateral occipital	2.156704 -0.13708
41535 Juv2 F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP)	51.20427 73.57701 40.35082 46.87621 3.595618 23.23834 46.87621 31.09544 4.328058 54.929 70.32629 42.12941 46.97479 69.97141 43.48743	(L1)d=I - G RFP-G LFP-G ROP-G LOP-G	-4.328 -70 -17.1 3.7247 -3.25 1.779 -4.229 -3.61 3.137 1.2074 -70.9 -14.1 -8.613 -70.3 -14	t (RFP) t (LFP) t (ROP) t (LOP) t (B)	0.034735 0.04165 0.998424 0.998189 0.692669	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	51.05393 71.14621 39.77 51.024 70.66226 39.6 46.88303 3.705909 23.2 46.88405 3.722383 23.2 48.20635 25.10304 28.4	Antero-posterior frontal Antero-posterior occipital Antero-posterior occipital 9934	0.499114 0.016991

			Right Occipital Pole (ROP) Left Occipital Pole (LOP)	52.41164 2.630131 26.2664 42.5914 3.229591 26.370	1 B-G 3 (L2)d=B onto L1 - B RFP-B ROP-B LOP-B LOP-B N of Plain	-4.328 -42.5 -36 1.3301 -5.99 24.17 8.0528 39.23 37.8 0.0966 38.88 39.16 5.3354 -28.5 21.94 -4.285 -27.9 22.04 1794 -81.8 -119	t (RFP) 1 t (LFP) 1 t (ROP) 1 t (LOP) 1 t (LOP) 1 RFP to P 3 LFP to P 4 ROP to P LOP to P 4	1.108422 1.147611 1.138838 1.116093 3.742927 4.259292 5.36123 4.461466	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	48.35057 24.45333 31.11804 48.4027 24.2185 32.06521 48.39103 24.27107 31.85318 48.36077 24.40736 31.30345	Vertical frontal Vertical occipital Lateral frontal Lateral occipital	0.977241 -0.56718 -0.51637 0.899764
	41537 Juv2	м	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (RFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	51.4862 26.2922 45.349 49.096 95.34961 15.374 48.8376 64.27701 5.232 48.38268 31.43958 49.1156 55.44282 32.00059 48.7587 43.63147 96.86732 22.7949 54.8074 97.57829 23.1152	2 (L1)d=I - G 3 RFP-G 5 LFP-G 5 ROP-G 3 LOP-G 5 B-G 7	-2.39 69.06 -30 -3.104 5.147 3.766 3.9566 5.708 3.41 -7.855 70.58 -22.6 3.212 71.29 -22.2 -2.649 37.98 -40.1	t (RFP) 0 t (LFP) 0 t (ROP) 0 t (ROP) 0 t (LOP) 0 t (B) 0	0.044065 0.049805 0.981572 0.983825 0.675456	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	51.38088 29.33522 44.02838 51.36716 29.73163 43.85631 49.14005 94.07702 15.92717 49.13467 94.23263 15.85963 49.87173 72.93747 25.1028	Antero-posterior frontal Antero-posterior occipital	0.432363 -0.16972
					(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	1.0341 8.66 19.87 -0.455 -32.8 43.88 6.6052 -32.3 43.53 -5.206 32.59 17.56 5.9698 33.3 17.88	t (RFP) 1 t (LFP) 1 t (ROP) 1 t (LOP) 1	1.246782 1.257544 1.329016 1.380151	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	50.12693 75.07472 30.00641 50.13806 75.16792 30.22025 50.21197 75.7869 31.64042 50.26485 76.22976 32.65648	Vertical frontal Vertical occipital	0.233531 1.10964
1					N of Plain	-1632 -16.5 92.11	RFP to P 3 LFP to P ROP to P 5 LOP to P 5	3.258744 3.81559 5.858435 5.288286			Lateral frontal Lateral occipital	-0.55685 0.570149
	41544 Infant	м	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (LOP)	39.2392 8.007999 30.060 39.9784 68.12959 15.822 40.5944 45.5224 4.989 38.00597 8.655211 29.0372 40.3527 8.641371 31.313 32.64419 71.98711 18.9208 45.54411 71.987492 19.9568	3 (L1)d=I - G 3 RFP-G 5 LFP-G 7 ROP-G 3 LOP-G 2 B-G 9	0.7392 60.12 -14.2 -1.233 0.647 -1.02 1.1135 0.633 1.071 -6.595 63.98 -11.1 6.3049 63.98 -10.1 1.3552 37.51 -25.1	t (RFP) 0 t (LFP) 0 t (ROP) 1 t (LOP) 1 t (B) 0	0.013759 0.006218 1.048114 1.046732 0.684412	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	39.24937 8.835188 29.86587 39.24379 8.381828 29.97271 40.01396 71.02228 15.21112 40.01294 70.93918 15.2071 39.74511 49.15592 20.36406	Antero-posterior frontal Antero-posterior occipital	-0.46581 0.085386
					(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.849 3.634 15.37 -2.588 -36.9 24.05 -0.242 -36.9 26.14 -7.95 26.46 13.93 4.9497 26.46 14.97	t (RFP) t (LFP) t (ROP) t (LOP) 1	0.95071 1.07121 1.26688 1.286717	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	39.78698 48.97682 19.60625 39.68464 49.41466 21.45887 39.51846 50.12563 24.46719 39.50161 50.19771 24.77218	Vertical frontal Vertical occipital	1.906406 0.313846
					N of Plain	-975.8 -0.67 -53.7	RFP to P 1 LFP to P 1 ROP to P 7 LOP to P 5	1.287203 1.171152 7.153943 5.783422			Lateral frontal Lateral occipital	0.116051 1.37052
	41549 Juv1	м	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	47.9085 74.78399 35.54 47.724 4.6125 20.725 48.831 32.595 3.751 50.64008 70.82474 40.4550 43.79288 71.19752 40.0972 54.4938 3.477524 26.3461 36.2614 29.8764 25.620	7 (L1)d=I - G 5 RFP-G 6 LFP-G 5 ROP-G 5 LOP-G 9 B-G	-0.184 -70.2 -14.8 2.7316 -3.96 4.908 -4.116 -3.59 4.55 6.5853 -71.3 -9.2 -8.282 -71.9 -9.93 0.9225 -42.2 -31.8	t (RFP) 0 t (LFP) 0 t (ROP) 0 t (LOP) 1 t (B)	0.039772 0.035963 0.999045 1.009154 0.66713	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	47.90116 71.99312 34.95752 47.90186 72.2604 35.01397 47.72418 4.679524 20.73966 47.72231 3.970142 20.58982 47.78541 27.97046 25.65913	Antero-posterior frontal Antero-posterior occipital	-0.27318 -0.72504
					(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-1.046 -4.62 21.91 1.8091 38.23 36.7 -5.038 38.6 36.35 5.6628 -29.1 22.59 -9.205 -29.7 21.87	t (RFP) 1 t (LFP) 1 t (ROP) 1 t (LOP)	1.244768 1.239986 1.241442 1.24581	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	47.52949 26.83851 31.02142 47.53449 26.86063 30.91664 47.53296 26.8539 30.94855 47.5284 26.83369 31.04425	Vertical frontal Vertical occipital	-0.1072 0.097914
					N of Plain	1605.8 -19.5 72.52	RFP to P 3 LFP to P 3 ROP to P 7 LOP to P 7	2.99812 3.862276 7.029746 7.847719			Lateral frontal Lateral occipital	-0.86416 -0.81797
	41550 Juv2	F	Glabella(G) Inion (I) Basion (B) Right Frontal Pole (RFP) Left Frontal Pole (LFP) Right Occipital Pole (ROP) Left Occipital Pole (ROP)	50.4526 25.0002 37.274 52.003 98.70881 23.772 52.1322 72.35201 5.232 48.91654 29.64732 40.569 55.15085 30.45181 41.101 47.19511 99.23953 33.756 60.2596 98.43899 33.587	2 (L1)d=I - G 3 RFP-G 5 LFP-G 1 ROP-G 7 LOP-G 9 B-G 5	1.5504 73.71 -13.5 -1.536 4.647 3.295 4.6982 5.452 3.828 -3.257 74.24 -3.52 9.807 73.44 -3.69 1.6796 47.35 -32	t (RFP) 0 t (LFP) 0 t (ROP) 0 t (ROP) 0 t (LOP) t (B)	0.052631 0.063628 0.981641 0.97515 0.69877	RFP onto L1 LFP onto L1 ROP onto L1 LOP onto L1 B onto L1	50.5342 28.87959 36.5636 50.55125 29.69011 36.41513 51.97454 97.35559 24.02067 51.96447 96.87712 24.10831 51.53598 76.50557 27.83983	Antero-posterior frontal Antero-posterior occipital	0.82418 0.486533
					(L2)d=B onto L1 - B RFP-B LFP-B ROP-B LOP-B	-0.596 4.154 22.61 -3.216 -42.7 35.34 3.0186 -41.9 35.87 -4.937 26.89 28.52 8.1274 26.09 28.36	t (RFP) 1 t (LFP) 1 t (ROP) 1 t (LOP) 1	1.179133 1.201197 1.436516 1.408255	RFP onto L2 LFP onto L2 ROP onto L2 LOP onto L2	51.42917 77.24961 31.88952 51.41602 77.34126 32.38833 51.27571 78.31867 37.70825 51.29256 78.20128 37.06933	Vertical frontal Vertical occipital	0.507328 -0.64983
					N of Plain	-1722 27 -50.4	RFP to P 1 LFP to P 4 ROP to P LOP to P 8	1.511692 4.722155 4.52165 8.543237			Lateral frontal Lateral occipital	-3.21046 -4.02159

3. Data Compression: Petalial components; Size correction of petalial components

				Antero-posterior	Antero-posterior				
Id number		ECV	Sex	frontal	occipital	Vertical frontal	Vertical occipital	Lateral frontal	Lateral occipital
	41413	108689	М	0.564858251	-0.485621723	-0.863837311	-1.535312039	-2.510143346	1.684713258
	41415	102076	М	0.172271943	-1.394266336	-0.23906566	-2.422567049	-0.080077662	-3.374934405
	41422	104821	F	0.091423701	0.056598711	0.222400043	-4.174350929	-1.833332935	-0.432102847
	41425	103532	F	0.057194441	0.046091514	-0.572689996	-1.211314266	0.005226747	0.395045665
	41428	103517	М	-0.140106188	-0.758741076	0.044334912	-1.672639822	-0.365004	4.518775136
	41431	101762	М	0.371724684	0.781156199	2.925101407	6.75394614	-1.91693478	-5.552523917
	41437	965754	F	0.290763556	-0.001754365	0.285094999	-0.244265425	-0.408142564	0.397404186
	41438	85961	F	0.450898249	0.654648683	1.368735063	2.241880071	-0.079981079	0.182312457
	41447	103864	М	0.142936111	0.111461433	-0.602314796	2.3649948	0.025939643	-1.356816003
	41461	994936	М	0.689388493	-0.562887545	-0.559960415	-0.509426693	-2.974313206	-0.724143819
	41462	99606.4	F	0.085162608	-0.407291607	1.077171949	1.1292119	2.699763812	1.996683943
	41466	84891.8	F	0.145190332	-0.571485764	0.52334825	-0.521463777	-0.741649214	-0.144148463
	41467	111262	М	0.691478596	-0.519652052	1.357596777	-0.288438092	-2.707314133	3.873191224
	41470	72392	М	0.759119197	-0.09444208	0.910411397	-0.004603062	-0.895195849	0.441217853
	41473	106639	F	0.180385504	0.019665535	0.253838062	0.368658744	0.191413705	2.194028344
	41482	102418	F	-0.011311024	-0.53860846	-0.282907662	-0.834820481	0.27096509	0.018719551
	41488	105454	F	-0.19766867	0.178768549	-1.746943163	0.147254426	0.861081181	-1.875779103
	41497	95755.7	F	0.143270873	-1.10244488	1.353684016	-0.854633962	2.706197559	0.326946021
	41499	97544	М	0.549970663	-0.559020923	-0.875082857	0.584078434	-2.194625436	0.591264924
	41529	101465	М	-0.184133992	0.190179814	-1.552660989	1.093530998	2.156704435	-0.137076724
	41535	94282	F	0.499114299	0.016990527	0.977241308	-0.567182388	-0.51636529	0.899763661
	41537	92666.7	М	0.432363228	-0.169715034	0.233531437	1.109640472	-0.556846015	0.570148758
	41544	85825.2	М	-0.465811651	0.085385718	1.906406482	0.313846448	0.116050523	1.370520455
	41549	91862	Μ	-0.273177424	-0.725036353	-0.107201169	0.097913986	-0.864156385	-0.817972937
	41550	89522.7	F	0.824180073	0.486533017	0.507327967	-0.649832567	-3.21046334	-4.021587567

Size correction: (X/ECV^(1/3))*100

Antero-posterior Antero-posterior

frontal	occipital	Vertical frontal	Vertical occipital	Lateral frontal	Lateral occipital
1.183616323	-1.017582371	-1.810103579	-3.217126398	-5.259809223	3.530184978
0.368615283	-2.983352202	-0.511535741	-5.183637123	-0.1713445	-7.221445232
0.193899207	0.120039388	0.471685038	-8.853320579	-3.888289336	-0.916440685
0.121804207	0.098158845	-1.219629898	-2.579676797	0.011131148	0.841309448
-0.298391713	-1.615931836	0.094422456	-3.562311337	-0.777368726	9.623879383
0.796207363	1.673180028	6.26535546	14.4664637	-4.105935528	-11.89310427
0.294160575	-0.001774861	0.288425792	-0.247119202	-0.412910934	0.402047098
1.021671775	1.483341494	3.101360417	5.079783736	-0.181225834	0.413094289
0.304079363	0.237120776	-1.281352195	5.031241634	0.055183468	-2.886462652
0.690556125	-0.56384092	-0.560908832	-0.51028952	-2.979350864	-0.725370317
0.183718633	-0.878637455	2.323749383	2.436013542	5.824116099	4.307383871
0.330356191	-1.300319781	1.190790959	-1.186503159	-1.687498104	-0.327985594
1.437682944	-1.080430973	2.822637958	-0.599704066	-5.628893472	8.052918769
1.821432645	-0.226604581	2.184443556	-0.0110446	-2.14793533	1.058659303
0.380390458	0.041469973	0.535284566	0.777414288	0.40364633	4.626687985
-0.024175557	-1.151191941	-0.604671193	-1.784299135	0.5791458	0.040010134
-0.418392112	0.378387485	-3.697638269	0.311683638	1.822593198	-3.970336724
0.313162459	-2.409731602	2.958891832	-1.868064792	5.915225238	0.714640862
1.19473798	-1.214398464	-1.9010009	1.268832567	-4.767531321	1.28444426
-0.394786125	0.407748463	-3.328929171	2.34454737	4.62400766	-0.293894617
1.096622326	0.03733051	2.147132707	-1.246177219	-1.13452511	1.976903729
0.955449018	-0.37504129	0.51606466	2.452116254	-1.230534753	1.259931546
-1.056019828	0.193573971	4.321925052	0.711506616	0.263092718	3.10704288
-0.605433116	-1.606871508	-0.237586025	0.21700318	-1.915198139	-1.812843455
1.842373673	1.087596814	1.134081885	-1.452636933	-7.176675744	-8.989864356

4. Spearman Correlation

Id number E	CV	ECV^1/3	Sex	Antero	o-posterior	frontal	Antero	-posterior o	ccipital	V	ertical front	al		Ve	rtical occipi	al	L	ateral fronta	al	L	teral occipit	tal	
		Rank			Absolute	Rank		Absolute	Rank		Absolute	Rank			Absolute	Rank		Absolute	Rank		Absolute	Rank	
41422	104821	34940.33	7 F	0.091424	0.091424	22	0.056599	0.056599	21	0.2224	0.2224	1	23	-4.17435	4.174351	2	-1.83333	1.833333	1	-0.4321	0.432103	1	.8
41425	103532	34510.67	9 F	0.057194	0.057194	24	0.046092	0.046092	22	-0.57269	0.57269		14	-1.21131	1.211314	8	0.005227	0.005227	2	0.395046	0.395046	2	0
41437	965754	321918	2 F	0.290764	0.290764	12	-0.00175	0.001754	25	0.285095	0.285095		18	-0.24427	0.244265	22	-0.40814	0.408143	1	0.397404	0.397404	1	.9
41438	85961	28653.67	22 F	0.450898	0.450898	9	0.654649	0.654649	6	1.368735	1.368735		5	2.24188	2.24188	5	-0.07998	0.079981	2	0.182312	0.182312	2	2
41462	99606.4	33202.13	15 F	0.085163	0.085163	23	-0.40729	0.407292	14	1.077172	1.077172		8	1.129212	1.129212	9	2.699764	2.699764		5 1.996684	1.996684		7
41466	84891.8	28297.27	24 F	0.14519	0.14519	18	-0.57149	0.571486	7	0.523348	0.523348		16	-0.52146	0.521464	17	-0.74165	0.741649	1	-0.14415	0.144148	2	3
41473	106639	35546.33	5 F	0.180386	0.180386	16	0.019666	0.019666	23	0.253838	0.253838	1	20	0.368659	0.368659	19	0.191414	0.191414	2	2.194028	2.194028		6
41482	102418	34139.33	11 F	-0.01131	0.011311	25	-0.53861	0.538608	10	-0.28291	0.282908		19	-0.83482	0.83482	13	0.270965	0.270965	1	0.01872	0.01872	2	5
41488	105454	35151.33	6 F	-0.19767	0.197669	14	0.178769	0.178769	16	-1.74694	1.746943		3	0.147254	0.147254	23	0.861081	0.861081	1	-1.87578	1.875779		8
41497	95755.7	31918.57	17 F	0.143271	0.143271	19	-1.10244	1.102445	2	1.353684	1.353684		7	-0.85463	0.854634	12	2.706198	2.706198		0.326946	0.326946	2	1
41535	94282	31427.33	18 F	0.499114	0.499114	7	0.016991	0.016991	24	0.977241	0.977241		9	-0.56718	0.567182	16	-0.51637	0.516365	1	0.899764	0.899764	1	.2
41550	89522.7	29840.9	21 F	0.82418	0.82418	1	0.486533	0.486533	12	0.507328	0.507328		17	-0.64983	0.649833	14	-3.21046	3.210463		L -4.02159	4.021588		3
41413	108689	36229.67	4 M	0.564858	0.564858	5	-0.48562	0.485622	13	-0.86384	0.863837		12	-1.53531	1.535312	7	-2.51014	2.510143		5 1.684713	1.684713		9
41415	102076	34025.33	12 M	0.172272	0.172272	17	-1.39427	1.394266	1	-0.23907	0.239066	1	21	-2.42257	2.422567	з	-0.08008	0.080078	2	-3.37493	3.374934		5
41428	103517	34505.67	10 M	-0.14011	0.140106	21	-0.75874	0.758741	4	0.044335	0.044335	1	25	-1.67264	1.67264	6	-0.365	0.365004	1	4.518775	4.518775		2
41431	101762	33920.67	13 M	0.371725	0.371725	11	0.781156	0.781156	3	2.925101	2.925101		1	6.753946	6.753946	1	-1.91693	1.916935		-5.55252	5.552524		1
41447	103864	34621.33	8 M	0.142936	0.142936	20	0.111461	0.111461	18	-0.60231	0.602315		13	2.364995	2.364995	4	0.02594	0.02594	2	-1.35682	1.356816	1	.1
41461	994936	331645.3	1 M	0.689388	0.689388	4	-0.56289	0.562888	8	-0.55996	0.55996		15	-0.50943	0.509427	18	-2.97431	2.974313		-0.72414	0.724144	1	4
41467	111262	37087.33	3 M	0.691479	0.691479	3	-0.51965	0.519652	11	1.357597	1.357597		6	-0.28844	0.288438	21	-2.70731	2.707314		3.873191	3.873191		4
41470	72392	24130.67	25 M	0.759119	0.759119	2	-0.09444	0.094442	19	0.910411	0.910411		10	-0.0046	0.004603	25	-0.8952	0.895196	1	0.441218	0.441218	1	.7
41499	97544	32514.67	16 M	0.549971	0.549971	6	-0.55902	0.559021	9	-0.87508	0.875083		11	0.584078	0.584078	15	-2.19463	2.194625		0.591265	0.591265	1	.5
41529	101465	33821.67	14 M	-0.18413	0.184134	15	0.19018	0.19018	15	-1.55266	1.552661		4	1.093531	1.093531	11	2.156704	2.156704		3 -0.13708	0.137077	2	4
41537	92666.7	30888.9	19 M	0.432363	0.432363	10	-0.16972	0.169715	17	0.233531	0.233531	1	22	1.10964	1.10964	10	-0.55685	0.556846	1	0.570149	0.570149	1	.6
41544	85825.2	28608.4	23 M	-0.46581	0.465812	8	0.085386	0.085386	20	1.906406	1.906406		2	0.313846	0.313846	20	0.116051	0.116051	2	1.37052	1.37052	1	0.
41549	91862	30620.67	20 M	-0.27318	0.273177	13	-0.72504	0.725036	5	-0.1072	0.107201	:	24	0.097914	0.097914	24	-0.86416	0.864156	1	-0.81797	0.817973	1	3
Spearman co	efficient (F)				-0.34114			-0.68406			-0.33	32			-0.27951			-0.2814	L		0.10711	.1
Spearman co	efficient (M)				-0.00783			0.32096			-0.025	37			0.350412			0.37919	5		0.35474	6
Spearman co	efficient (AII)				-0.15923			-0.18538			-0.151	54			0.091538			0.06153	3		0.22076	.9
T statistic (F)						1.147617			2.965575			1.1175	31			0.920585			0.92739	L		0.34067	'5
T statistic (M	I)					0.025971			1.123972			0.0841	59			1.240861			1.3591	5		1.25840	13
T statistic (Al	1)					0.773513			0.904756			0.7352	44			0.440854			0.29568	9		1.08555	7
df (F)						10			10				10			10			1)		1	0
df (M)						11			11				11			11			1	L		1	1
df (All)						23			23			:	23			23			2	3		2	.3
p-value (F)						0.27784			0.014153			0.2898	97			0.37894			0.37556	5		0.74039	17
p-value (M)						0.979746			0.284955			0.9344	42			0.240469			0.20130	9		0.234	3
p-value (All)						0.447097			0.374975			0.46962	22			0.663435			0.77012	L		0.28892	.2
Spoormon of	vision t	abla																					

spearman com	elation tabl	e			
alpha	0.1	0.05	0.025	0.01	0.005
n=12	0.406	0.503	0.587	0.678	0.727
n=13	0.385	0.484	0.56	0.648	0.703
n=25	0.265	0.337	0.398	0.466	0.511

5. Grubbs Test statistic: Size corrected petalial components sorted in ascending order; Grubbs test calculations

Two sided Grubbs test													
APF	Grubbs	APO	Grubbs	VF	Grubbs	VO	Grubbs	LF	Grubbs	LO	Grubbs		
-1.05602	2.070502	-2.98335	2.289135	-3.69764	1.856091	-8.85332	2.123533	-7.17668	1.887664	-11.8931	2.54352		
-0.60543	1.458879	-2.40973	1.775534	-3.32893	1.697151	-5.18364	1.254308	-5.62889	1.417787	-8.98986	1.927181		
-0.41839	1.204991	-1.61593	1.064791	-1.901	1.08161	-3.56231	0.870271	-5.25981	1.30574	-7.22145	1.551758		
-0.39479	1.172949	-1.60687	1.056678	-1.8101	1.042427	-3.21713	0.788508	-4.76753	1.156294	-3.97034	0.861569		
-0.29839	1.042104	-1.30032	0.782202	-1.28135	0.814497	-2.57968	0.637518	-4.10594	0.955447	-2.88646	0.63147		
-0.02418	0.669885	-1.2144	0.705271	-1.21963	0.78789	-1.86806	0.468961	-3.88829	0.889374	-1.81284	0.403548		
0.121804	0.471733	-1.15119	0.648678	-0.60467	0.522799	-1.7843	0.449119	-2.97935	0.613438	-0.91644	0.213248		
0.183719	0.387691	-1.08043	0.58532	-0.56091	0.503934	-1.45264	0.37056	-2.14794	0.361036	-0.72537	0.172685		
0.193899	0.373872	-1.01758	0.529048	-0.51154	0.482651	-1.24618	0.321656	-1.9152	0.290382	-0.32799	0.088323		
0.294161	0.237778	-0.87864	0.404641	-0.23759	0.364559	-1.1865	0.307522	-1.6875	0.221256	-0.29389	0.081085		
0.304079	0.224315	-0.56384	0.122782	0.094422	0.221439	-0.5997	0.168529	-1.23053	0.082531	0.04001	0.0102		
0.313162	0.211985	-0.37504	0.046263	0.288426	0.137809	-0.51029	0.147349	-1.13453	0.053385	0.402047	0.066658		
0.330356	0.188647	-0.2266	0.179168	0.471685	0.058812	-0.24712	0.085013	-0.77737	0.055041	0.413094	0.069004		
0.368615	0.136714	-0.00177	0.380474	0.516065	0.039681	-0.01104	0.029095	-0.41291	0.165683	0.714641	0.13302		
0.38039	0.120731	0.037331	0.415487	0.535285	0.031396	0.217003	0.024922	-0.18123	0.236019	0.841309	0.159911		
0.690556	0.300286	0.04147	0.419194	1.134082	0.226729	0.311684	0.047349	-0.17134	0.239018	1.058659	0.206053		
0.796207	0.443696	0.098159	0.469951	1.190791	0.251175	0.711507	0.142053	0.011131	0.294414	1.259932	0.248781		
0.955449	0.659849	0.120039	0.489542	2.147133	0.663427	0.777414	0.157665	0.055183	0.307788	1.284444	0.253985		
1.021672	0.749739	0.193574	0.555383	2.184444	0.679511	1.268833	0.274065	0.263093	0.370905	1.976904	0.40099		
1.096622	0.851477	0.237121	0.594373	2.323749	0.739562	2.344547	0.528866	0.403646	0.413574	3.107043	0.640911		
1.183616	0.969561	0.378387	0.720859	2.822638	0.954619	2.436014	0.550531	0.579146	0.466853	3.530185	0.730741		
1.194738	0.984658	0.407748	0.747148	2.958892	1.013354	2.452116	0.554345	1.822593	0.844339	4.307384	0.895735		
1.437683	1.314429	1.087597	1.355862	3.10136	1.074768	5.031242	1.165253	4.624008	1.694794	4.626688	0.963521		
1.821433	1.835328	1.483341	1.710199	4.321925	1.60092	5.079784	1.176751	5.824116	2.059123	8.052919	1.690887		
1.842374	1.863753	1.67318	1.880175	6.265355	2.438679	14.46646	3.40014	5.915225	2.086782	9.623879	2.024391		

max		2.070502	2.289135	2.438679	3.40014	2.086782	2.54352
mean	0.469334	-0.42671	0.608116	0.111788	-0.95868	0.088056	
stdev	0.736707	1.116859	2.319797	4.221789	3.294019	4.710465	
G	2.810482	2.049619	1.051247	0.805379	0.633506	0.539972	
alpha	0.05	0.05	0.05	0.05	0.05	0.05	
size	25	25	25	25	25	25	
sig value	0.001	0.001	0.001	0.001	0.001	0.001	
df	23	23	23	23	23	23	
t-crit	3.484964	3.484964	3.484964	3.484964	3.484964	3.484964	
G-crit	2.821681	2.821681	2.821681	2.821681	2.821681	2.821681	
significant	no	no	no	no	no	no	

6. Linear Regression

ld				Antero-pos	sterior	Antero-pos	sterior								
number	ECV	ECV^1/3	Sex	frontal		occipital		Vertical fro	ntal	Vertical oc	cipital	Lateral fror	ntal	Lateral occ	ipital
41422	104821	34940.33	F	0.091424	0.091424	0.056599	0.056599	0.2224	0.2224	-4.17435	4.174351	-1.83333	1.833333	-0.4321	0.432103
41425	103532	34510.67	F	0.057194	0.057194	0.046092	0.046092	-0.57269	0.57269	-1.21131	1.211314	0.005227	0.005227	0.395046	0.395046
41437	965754	321918	F	0.290764	0.290764	-0.00175	0.001754	0.285095	0.285095	-0.24427	0.244265	-0.40814	0.408143	0.397404	0.397404
41438	85961	28653.67	F	0.450898	0.450898	0.654649	0.654649	1.368735	1.368735	2.24188	2.24188	-0.07998	0.079981	0.182312	0.182312
41462	99606.4	33202.13	F	0.085163	0.085163	-0.40729	0.407292	1.077172	1.077172	1.129212	1.129212	2.699764	2.699764	1.996684	1.996684
41466	84891.8	28297.27	F	0.14519	0.14519	-0.57149	0.571486	0.523348	0.523348	-0.52146	0.521464	-0.74165	0.741649	-0.14415	0.144148
41473	106639	35546.33	F	0.180386	0.180386	0.019666	0.019666	0.253838	0.253838	0.368659	0.368659	0.191414	0.191414	2.194028	2.194028
41482	102418	34139.33	F	-0.01131	0.011311	-0.53861	0.538608	-0.28291	0.282908	-0.83482	0.83482	0.270965	0.270965	0.01872	0.01872
41488	105454	35151.33	F	-0.19767	0.197669	0.178769	0.178769	-1.74694	1.746943	0.147254	0.147254	0.861081	0.861081	-1.87578	1.875779
41497	95755.7	31918.57	F	0.143271	0.143271	-1.10244	1.102445	1.353684	1.353684	-0.85463	0.854634	2.706198	2.706198	0.326946	0.326946
41535	94282	31427.33	F	0.499114	0.499114	0.016991	0.016991	0.977241	0.977241	-0.56718	0.567182	-0.51637	0.516365	0.899764	0.899764
41550	89522.7	29840.9	F	0.82418	0.82418	0.486533	0.486533	0.507328	0.507328	-0.64983	0.649833	-3.21046	3.210463	-4.02159	4.021588
41413	108689	36229.67	M	0.564858	0.564858	-0.48562	0.485622	-0.86384	0.863837	-1.53531	1.535312	-2.51014	2.510143	1.684713	1.684713
41415	102076	34025.33	M	0.172272	0.172272	-1.39427	1.394266	-0.23907	0.239066	-2.42257	2.422567	-0.08008	0.080078	-3.37493	3.374934
41428	103517	34505.67	M	-0.14011	0.140106	-0.75874	0.758741	0.044335	0.044335	-1.67264	1.67264	-0.365	0.365004	4.518775	4.518775
41431	101762	33920.67	M	0.371725	0.371725	0.781156	0.781156	2.925101	2.925101	6.753946	6.753946	-1.91693	1.916935	-5.55252	5.552524
41447	103864	34621.33	M	0.142936	0.142936	0.111461	0.111461	-0.60231	0.602315	2.364995	2.364995	0.02594	0.02594	-1.35682	1.356816
41461	994936	331645.3	M	0.689388	0.689388	-0.56289	0.562888	-0.55996	0.55996	-0.50943	0.509427	-2.97431	2.974313	-0.72414	0.724144
41467	111262	37087.33	М	0.691479	0.691479	-0.51965	0.519652	1.357597	1.357597	-0.28844	0.288438	-2.70731	2.707314	3.873191	3.873191
41470	72392	24130.67	M	0.759119	0.759119	-0.09444	0.094442	0.910411	0.910411	-0.0046	0.004603	-0.8952	0.895196	0.441218	0.441218
41499	97544	32514.67	M	0.549971	0.549971	-0.55902	0.559021	-0.87508	0.875083	0.584078	0.584078	-2.19463	2.194625	0.591265	0.591265
41529	101465	33821.67	M	-0.18413	0.184134	0.19018	0.19018	-1.55266	1.552661	1.093531	1.093531	2.156704	2.156704	-0.13708	0.137077
41537	92666.7	30888.9	M	0.432363	0.432363	-0.16972	0.169715	0.233531	0.233531	1.10964	1.10964	-0.55685	0.556846	0.570149	0.570149
41544	85825.2	28608.4	Μ	-0.46581	0.465812	0.085386	0.085386	1.906406	1.906406	0.313846	0.313846	0.116051	0.116051	1.37052	1.37052
41549	91862	30620.67	М	-0.27318	0.273177	-0.72504	0.725036	-0.1072	0.107201	0.097914	0.097914	-0.86416	0.864156	-0.81797	0.817973
Correlation	n factor (M)				0.351965		0.070633		-0.13598		-0.14228		0.463701		-0.1819
Correlation	n factor (F)				0.040024		-0.32389		-0.29399		-0.23133		-0.19883		-0.17433
Correlation	n factor (All)			0.182279		-0.10907		-0.18869		-0.17		0.134739		-0.17067
T value (M)				1.247136		0.234851		-0.45521		-0.47673		1.735819		-0.61351
T value (F)					0.126667		-1.08258		-0.97268		-0.75193		-0.64156		-0.55986
T value (Al	1)				0.889073		-0.52624		-0.92148		-0.82735		0.652131		-0.83068
df (M)					11		11		11		11		11		11
df (F)					10		10		10		10		10		10
df (All)					23		23		23		23		23		23
p-value (M)				0.238248		0.818639		0.65781		0.642888		0.110483		0.552012
p-value (F)					0.901715		0.304408		0.353653		0.469421		0.535584		0.587894
p-value (Al	I)				0.383169		0.603758		0.366363		0.416543		0.520781		0.414697

Id

7. Asymmetry: Directional asymmetry, Absolute asymmetry, FA4a, Kurtosis, Skewness

Id		Antero-pos	terior	Antero-pos	sterior								
number	Sex	frontal		occipital		Vertical fro	ntal	Vertical oc	cipital	Lateral from	ntal	Lateral occ	ipital
			Absolute		Absolute		Absolute		Absolute		Absolute		Absolute
41422	F	0.091424	0.091424	0.056599	0.056599	0.2224	0.2224	-4.17435	4.174351	-1.83333	1.833333	-0.4321	0.432103
41425	F	0.057194	0.057194	0.046092	0.046092	-0.57269	0.57269	-1.21131	1.211314	0.005227	0.005227	0.395046	0.395046
41437	F	0.290764	0.290764	-0.00175	0.001754	0.285095	0.285095	-0.24427	0.244265	-0.40814	0.408143	0.397404	0.397404
41438	F	0.450898	0.450898	0.654649	0.654649	1.368735	1.368735	2.24188	2.24188	-0.07998	0.079981	0.182312	0.182312
41462	F	0.085163	0.085163	-0.40729	0.407292	1.077172	1.077172	1.129212	1.129212	2.699764	2.699764	1.996684	1.996684
41466	F	0.14519	0.14519	-0.57149	0.571486	0.523348	0.523348	-0.52146	0.521464	-0.74165	0.741649	-0.14415	0.144148
41473	F	0.180386	0.180386	0.019666	0.019666	0.253838	0.253838	0.368659	0.368659	0.191414	0.191414	2.194028	2.194028
41482	F	-0.01131	0.011311	-0.53861	0.538608	-0.28291	0.282908	-0.83482	0.83482	0.270965	0.270965	0.01872	0.01872
41488	F	-0.19767	0.197669	0.178769	0.178769	-1.74694	1.746943	0.147254	0.147254	0.861081	0.861081	-1.87578	1.875779
41497	F	0.143271	0.143271	-1.10244	1.102445	1.353684	1.353684	-0.85463	0.854634	2.706198	2.706198	0.326946	0.326946
41535	F	0.499114	0.499114	0.016991	0.016991	0.977241	0.977241	-0.56718	0.567182	-0.51637	0.516365	0.899764	0.899764
41550) F	0.82418	0.82418	0.486533	0.486533	0.507328	0.507328	-0.64983	0.649833	-3.21046	3.210463	-4.02159	4.021588
41413	M	0.564858	0.564858	-0.48562	0.485622	-0.86384	0.863837	-1.53531	1.535312	-2.51014	2.510143	1.684713	1.684713
41415	М	0.172272	0.172272	-1.39427	1.394266	-0.23907	0.239066	-2.42257	2.422567	-0.08008	0.080078	-3.37493	3.374934
41428	M	-0.14011	0.140106	-0.75874	0.758741	0.044335	0.044335	-1.67264	1.67264	-0.365	0.365004	4.518775	4.518775
41431	. М	0.371725	0.371725	0.781156	0.781156	2.925101	2.925101	6.753946	6.753946	-1.91693	1.916935	-5.55252	5.552524
41447	M	0.142936	0.142936	0.111461	0.111461	-0.60231	0.602315	2.364995	2.364995	0.02594	0.02594	-1.35682	1.356816
41461	. М	0.689388	0.689388	-0.56289	0.562888	-0.55996	0.55996	-0.50943	0.509427	-2.97431	2.974313	-0.72414	0.724144
41467	M	0.691479	0.691479	-0.51965	0.519652	1.357597	1.357597	-0.28844	0.288438	-2.70731	2.707314	3.873191	3.873191
41470	M	0.759119	0.759119	-0.09444	0.094442	0.910411	0.910411	-0.0046	0.004603	-0.8952	0.895196	0.441218	0.441218
41499	M	0.549971	0.549971	-0.55902	0.559021	-0.87508	0.875083	0.584078	0.584078	-2.19463	2.194625	0.591265	0.591265
41529	M	-0.18413	0.184134	0.19018	0.19018	-1.55266	1.552661	1.093531	1.093531	2.156704	2.156704	-0.13708	0.137077
41537	M	0.432363	0.432363	-0.16972	0.169715	0.233531	0.233531	1.10964	1.10964	-0.55685	0.556846	0.570149	0.570149
41544	М	-0.46581	0.465812	0.085386	0.085386	1.906406	1.906406	0.313846	0.313846	0.116051	0.116051	1.37052	1.37052
41549	M	-0.27318	0.273177	-0.72504	0.725036	-0.1072	0.107201	0.097914	0.097914	-0.86416	0.864156	-0.81797	0.817973

									FA4a = 0 798(var(Kurtos	sis n-
					DA =	(R -I)	FA1 =	R-II	R-L))^1/2	Kurtosis	value	Skewness
Trait		Sex	N		Mean	SE	Mean	SE			raiae	one micos
Frontal	AP	Μ		13	0.25	0.11	0.42	0.07	0.07	-1.21	ns	-0.44
		F		12	0.21	0.08	0.25	0.06	0.03	0.23	ns	0.97
		All		25	0.23	0.07	0.34	0.05	0.05	-0.08	ns	-0.07
	VERT	М		13	0.20	0.26	0.94	0.15	0.63	-0.44	ns	0.90
		F		12	0.33	0.35	0.76	0.23	0.32	-0.61	ns	-1.09
		All		25	0.26	0.22	0.85	0.14	0.46	-0.28	ns	0.34
	LAT	М		13	-0.98	0.48	1.34	0.34	0.83	0.31	ns	0.49
		F		12	0.00	0.40	1.13	0.30	1.09	0.78	ns	0.02
		All		25	-0.51	0.32	1.24	0.22	1.02	0.93	ns	0.30
Occipital	AP	М		13	-0.32	0.14	0.50	0.10	0.12	0.51	ns	0.09
		F		12	-0.10	0.15	0.34	0.10	0.09	0.13	ns	-0.56
		All		25	-0.21	0.10	0.42	0.07	0.11	-0.94	ns	-0.22
	VERT	Μ		13	0.45	0.44	1.44	0.32	2.09	-1.48	*	1.77
		F		12	-0.43	0.63	1.08	0.50	0.93	-1.50	*	-0.90
		All		25	0.03	0.39	1.27	0.30	1.55	-1.53	*	1.36
	LAT	М		13	0.08	0.48	1.92	0.35	2.87	-1.40	*	-0.39
		F		12	-0.01	0.74	1.07	0.49	1.09	-1.54	*	-1.26
		All		25	0.04	0.44	1.52	0.31	1.93	-1.45	*	-0.52

Kurtosis values from Palmer and Strobeck 2003 - table 5, values for equation 7)

	Platykur	tosis	Leptokurtosis					
	5%	1%	5%	1%				
n=12	-1.442	-1.72	2.416	4.248				
n=15	-1.284	-1.563	2.152	3.973				
n=25	-1.052	-1.288	1.735	3.196				

Supplementary Material 2: Calculations

Endocranial shape asymmetries in Hylobates lar

Soumik Saha

The three cranial landmarks are the three following position vectors: Glabella, $\mathbf{g} \langle g_x, g_y, g_z \rangle$; Inion, $\mathbf{i} \langle i_x, i_y, i_z \rangle$; Basion, $\mathbf{b} \langle b_x, b_y, b_z \rangle$.

Let L_1 be the line formed by joining **g** to **i**.

Let \mathbf{d}_1 be the directional vector of L_1 .

 $\boldsymbol{d_1}=~\boldsymbol{i}-\boldsymbol{g}$ = $\langle i_x$ - g_x , i_y - g_y , i_z - $g_z\rangle$

Then L_1 is given by

 $\mathbf{r} = \mathbf{g} + t\mathbf{d}_1$, where t is a scalar factor.

Let **p** be a position vector (p_x, p_y, p_z) . To project **p** onto L₁, the directional vector that connects **p** to L₁ must be orthogonal to **d**₁. Orthogonal vectors have a dot product of 0.

Therefore,

 $[\mathbf{p} - (\mathbf{g} + t\mathbf{d}_1)] \cdot \mathbf{d}_1 = 0$ (\mathbf{p} - \mathbf{g} - t\mathbf{d}_1) \cdot \mathbf{d}_1 = 0 [(\mathbf{p} - \mathbf{g}) \cdot \mathbf{d}_1] - t (\mathbf{d}_1 \cdot \mathbf{d}_1 \cdot \text{d}_1 \cd

Then, to find the position vector of the projection of \mathbf{p} onto L_1 ,

 $\begin{aligned} r &= g + t d_1 \\ r &= g + \{ [(p - g) \cdot d_1] / (d_1 \cdot d_1) \} \times d_1 \end{aligned}$

The above technique was used to calculate the orthogonal projection of the right frontal point (RFP), left frontal point (LFP), right occipital point (ROP), and left occipital point (LOP) onto L_1 .

Then, the distance between \mathbf{g} and the projection of RFP was subtracted from the distance between \mathbf{g} and the projection of LFP to get the <u>antero-posterior frontal component of petalia</u>.

Similarly, the distance between \mathbf{g} and the projection of LFP was subtracted from the distance between \mathbf{g} and the projection of RFP to get the <u>antero-posterior occipital component of petalia</u>. This ensures that a positive value of the petalia component means that the right side is larger than the left.

Next, let the position vector of the the projection of **b** onto L_1 be **w** (w_x , w_y , w_z). Let L_2 be the line formed by joining **b** to **w**.

Let \mathbf{d}_2 be the directional vector of L_2 .

$$\mathbf{d}_2 = \mathbf{w} - \mathbf{b} = \langle \mathbf{w}_x - \mathbf{b}_x, \mathbf{w}_y - \mathbf{b}_y, \mathbf{w}_z - \mathbf{b}_z \rangle$$

Therefore,

 $(b - (g + td_1)) \cdot d_1 = 0$ t = [(b - g) \cdot d_1] / (d_1 \cdot d_1)

As per the above calculations, the position vector \mathbf{w} is

 $\mathbf{r} = \mathbf{g} + \{ [(\mathbf{b} - \mathbf{g}) \cdot \mathbf{d}_1] / (\mathbf{d}_1 \cdot \mathbf{d}_1) \} \times \mathbf{d}_1$

Then, to project position vector $\mathbf{p} \langle \mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z \rangle$ onto L_2 , the directional vector that connects \mathbf{p} to L_2 must be orthogonal to \mathbf{d}_2 . Orthogonal vectors have a dot product of 0.

Therefore,

 $[\mathbf{p} - (\mathbf{b} + t\mathbf{d}_2)] \cdot \mathbf{d}_2 = 0$ (\mbox{p} - \mbox{b} - t\mbox{d}_2) \cdot \mbox{d}_2 = 0 [(\mbox{p} - \mbox{b}) \cdot \mbox{d}_2] - t (\mbox{d}_2 \cdot \mbox{d}_2 \cdot) = 0 t = [(\mbox{p} - \mbox{b}) \cdot \mbox{d}_2] / (\mbox{d}_2 \cdot \mbox{d}_2 \cdot)

Then, to find the position vector of the projection of \mathbf{p} onto L_1 ,

The above technique was used to calculate the orthogonal projection of the right frontal point (RFP), left frontal point (LFP), right occipital point (ROP), and left occipital point (LOP) onto L_2 .

Then, the distance between \mathbf{b} and the projection of RFP was subtracted from the distance between \mathbf{b} and the projection of LFP to get the <u>vertical frontal component of petalia</u>.

Similarly, the distance between **b** and the projection of RFP was subtracted from the distance between **g** and the projection of LFP to get the <u>vertical occipital component of petalia</u>.

Finally, let the plain formed by L_1 and L_2 be defined by its normal vector **n** $\langle n_x, n_y, n_z \rangle$.

Recall, the three cranial landmarks are the three following position vectors: Glabella, $\mathbf{g} \langle g_x, g_y, g_z \rangle$; Inion, $\mathbf{i} \langle i_x, i_y, i_z \rangle$; Basion, $\mathbf{b} \langle b_x, b_y, b_z \rangle$.

 $\mathbf{i} - \mathbf{g} = \langle \mathbf{i}_x - g_x, \mathbf{i}_y - g_y, \mathbf{i}_z - g_z \rangle$ $\mathbf{b} - \mathbf{i} = \langle \mathbf{b}_x - \mathbf{i}_x, \mathbf{b}_y - \mathbf{i}_y, \mathbf{b}_z - \mathbf{i}_z \rangle$

The normal of the plane is the cross product of the above two vectors.

So

$$\mathbf{n} = \begin{vmatrix} i & j & k \\ i_x - g_x & i_y - g_y & i_z - g_z \\ b_x - i_x & b_y - i_y & b_z - i_z \end{vmatrix}$$
$$\mathbf{n} = \begin{vmatrix} i_y - g_y & i_z - g_z \\ b_y - i_y & b_z - i_z \end{vmatrix} \begin{vmatrix} i + \begin{vmatrix} i_x - g_x & i_z - g_z \\ b_x - i_x & b_z - i_z \end{vmatrix} \begin{vmatrix} j + \begin{vmatrix} i_x - g_x & i_y - g_y \\ b_x - i_x & b_z - i_z \end{vmatrix} k$$
$$\mathbf{n} = [(i_y - g_y)(b_z - i_z) - (i_z - g_z)(b_y - i_y)] i + [(i_x - g_x)(b_z - i_z) - (i_z - g_z)(b_x - i_x)] j + [(i_x - g_x)(b_y - i_y) - (i_y - g_y)(b_x - i_x)] k$$
$$\mathbf{n} = [g_y (i_z - b_z) + i_y (-g_z + b_z) + b_y (g_z - i_z)] i + [g_z (i_x - b_x) + i_z (-g_x - b_x) + b_z (g_x - i_x)] j + [g_x (i_y - b_y) + i_x (g_y - b_y) + b_x (g_y - i_y)] k$$
Therefore,

$$\begin{split} n_x &= g_y \left(i_z - b_z \right) + i_y \left(-g_z + b_z \right) + b_y \left(g_z - i_z \right) \\ n_y &= g_z \left(i_x - b_x \right) + i_z \left(-g_x - b_x \right) + b_z \left(g_x - i_x \right) \\ n_z &= g_x \left(i_y - b_y \right) + i_x \left(g_y - b_y \right) + b_x \left(g_y - i_y \right) \end{split}$$

Next, let the orthogonal distance from the position vector $\mathbf{p} \langle p_x, p_y, p_z \rangle$ to the plain defined by normal vector \mathbf{n} be d.

We are using the position vector $\mathbf{g} \langle g_x, g_y, g_z \rangle$ as a reference point on the plane.

Let the unit normal vector of the plane be n_u .

$$\mathbf{n_u} = \langle n_x, n_y, n_z \rangle / \mathbf{v} (n_x^2 + n_y^2 + n_z^2)$$
$$\mathbf{p} - \mathbf{g} = \langle p_x - g_x, p_y - g_y, p_z - g_z \rangle$$

$$d = |(\mathbf{p} - \mathbf{g}) \cdot \mathbf{n}_{\mathbf{u}}|$$

$$d = \frac{|\langle \mathbf{p}_{x} - \mathbf{g}_{x}, \mathbf{p}_{y} - \mathbf{g}_{y}, \mathbf{p}_{z} - \mathbf{g}_{z} \rangle \cdot \langle \mathbf{n}_{x}, \mathbf{n}_{y}, \mathbf{n}_{z} \rangle |}{\sqrt{(\mathbf{n}_{x}^{2} + \mathbf{n}_{y}^{2} + \mathbf{n}_{z}^{2})}}$$

$$d = \frac{|\mathbf{n}_{x}(\mathbf{p}_{x} - \mathbf{g}_{x}) + \mathbf{n}_{y}(\mathbf{p}_{y} - \mathbf{g}_{y}) + \mathbf{n}_{z}(\mathbf{p}_{z} - \mathbf{g}_{z})|}{\sqrt{(\mathbf{n}_{x}^{2} + \mathbf{n}_{y}^{2} + \mathbf{n}_{z}^{2})}}$$

The above formula was used to calculate the orthogonal distance from the right frontal point (RFP) to the plane, the left frontal point (LFP) to the plane, the right occipital point (ROP) to the plane, and the left occipital point (LOP) to the plane.

Then, the orthogonal distance from the left frontal point (LFP) to the plane was subtracted from the orthogonal distance from the right frontal point (RFP) to the plane to get the <u>lateral frontal</u> <u>component of petalia</u>.

Similarly, the orthogonal distance from the left occipital point (LOP) to the plane was subtracted from the orthogonal distance from the right occipital point (ROP) to the plane to get the <u>lateral</u> occipital component of petalia.