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ABSTRACT 

 Difference-in-differences and synthetic control methods have become common study 

designs for evaluating the effects of policy changes, including health policies. They also have 

potential for providing real-world effectiveness and safety evidence in pharmacoepidemiology. 

To effectively add to the toolkit of the field, however, designs—including both their benefits and 

drawbacks—must be well understood. Quasi-experimental designs provide an opportunity to 

estimate the average treatment effect on the treated without requiring the measurement of all 

possible confounding factors, and to assess population-level effects. This requires, however, 

other key assumptions, including the parallel trends or stable weighting assumptions, a lack of 

other concurrent events that could alter time trends, and an absence of contamination between 

exposed and unexposed units. The targeted estimands are also highly specific to the settings of 

the study, and combining across units or time periods can be challenging. Case studies are 

presented for three vaccine evaluation studies, showcasing some of these challenges and 

opportunities in a specific field of pharmacoepidemiology. These methods provide feasible and 

                                                 

1 Study investigators, conference presentations, preprint publication information, thanks. 
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valuable sources of evidence in various pharmacoepidemiologic settings and can be improved 

through research to identify and weigh the advantages and disadvantages in those settings. 

 

Abbreviations: COVID-19, coronavirus disease 2019; DiD, difference-in-differences; SCM, 

synthetic control method; ATT, average treatment effect on the treated; TWFE, two-way fixed 

effects; BCG, bacille Calmette-Guérin 
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INTRODUCTION 

 Determining the safety and efficacy of drugs and biologics is crucial, yet it faces many 

statistical, epidemiological, regulatory, and logistical challenges. A related yet distinct 

challenge—determining the effects of health and social policies—has incorporated quasi-

experimental study designs into its set of methods. Quasi-experimental methods can provide a 

convenient means for assessing the real-world effectiveness and safety of pharmacological 

products—especially those with population-level effects—in well-defined populations and 

specific circumstances that mitigate the risks of bias. 

 Quasi-experiments (in some cases also known as “natural experiments”) here refer to 

observational studies that identify a causal effect by taking advantage of circumstances that 

create variation in exposure status in ways that avoid the usual sources of confounding for that 

exposure and the outcome of interest.
1,2

 This often comes through changes in the exposure that 

are not otherwise causally connected to the outcome, often referred to as exogeneity.
2,3

  

A suite of such approaches developed or formalized in the quantitative social sciences —

including instrumental variables, regression discontinuity designs, interrupted time series, 

difference-in-differences, and synthetic control methods, among others—have become major 

empirical approaches in those fields
3,4

 and have become popular in epidemiology as well.
5
 For 

example, during the coronavirus disease 2019 (COVID-19) pandemic, they have been used to 

assess the effectiveness of universal masking in schools
6
, vaccine lotteries

7
, and other 

interventions.
8,9

 Along with this rise in the use of the methods have come articles describing the 

uses and limitations of these methods in health policy evaluation.
1,2,10–16

 

 This article will focus on the difference-in-differences (DiD) and synthetic control 

method (SCM), quasi-experimental designs that are both controlled (i.e., include exposed and 
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unexposed units) and longitudinal (i.e., exploit a change in exposure status over time to adjust for 

unmeasured confounders).
11,17

 

  Despite their expanding use in health policy research, these methods have not been 

extensively studied for use in evaluating drugs and biologics. This article provides a brief 

overview of these methods (including recent developments from the econometrics literature), 

advice on settings where they are beneficial for pharmacoepidemiology (exemplified through 

three case studies of vaccine effectiveness evaluation), and discussion of the tradeoffs and 

limitations they face. Finally, the article describes future research that can improve their use in 

pharmacoepidemiology. 

OVERVIEW OF METHODS 

 DiD and SCM analyses estimate the average treatment effect on the treated (ATT) by 

constructing the potential outcome for the exposed units in the (counterfactual) absence of the 

exposure using both cross-unit and within-unit comparisons. Below, I give a brief overview of 

these methods and their estimators, along with recent extensions. For a more comprehensive 

treatment, see the relevant econometrics
3,4

 or public health review literature.
1,10,14,15,17

 

Difference-in-Differences 

 Used (in function if not name) by John Snow in his investigation of the 1854 London 

cholera outbreak,
3,18,19

 the difference-in-differences method grew in popularity after Card and 

Krueger’s 1994 study on minimum wage increases.
20

 DiD methods rely on the parallel trends 

assumption: in the absence of exposure, the exposed and unexposed units would have equivalent 

trends over time in their expected outcomes. For the canonical “two-by-two” DiD analysis, with 

one pre-exposure and one post-exposure period for the exposed unit, and the same two time 

periods for the unexposed units, the ATT estimate is given by the difference between the pre-
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post difference in the exposed unit and the pre-post difference in the unexposed unit (see Figure 

1A). For multiple units and time points, this is commonly extended into the following two-way 

fixed effects (TWFE) regression model:
21

 

𝐸[𝑌𝑖𝑡|𝑖, 𝑡] = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝐷𝑖𝑡, 

where 𝑌𝑖𝑡 is the outcome of interest for unit i in time period t, 𝛼𝑖 are the unit-specific fixed 

effects, 𝛾𝑡 are the period-specific fixed effects, and 𝐷𝑖𝑡 is an indicator of whether unit i was 

exposed in period t. The ATT estimate is then given by �̂�. The fixed effects control for within-

unit confounding over time and within-period confounding between exposure groups. 

Extensions of the DiD Model 

 Several extensions to the DiD model aim to improve the validity of the parallel trends 

assumption. For example, covariates can be added when parallel trends holds only conditionally, 

or the so-called difference-in-difference-in-differences (or triple-differences) model can be used 

to remove non-parallel trends.
4
 Both of these have analogous approaches in the epidemiology 

literature: adjusting for measured covariates in cohort studies for the former, and using negative 

controls to adjust for residual bias for the latter.
22,23

 

 The functional form of the parallel trends assumption can also be changed by 

transforming the outcome variable. For example, if the counterfactual outcomes are judged more 

likely to have equivalent multiplicative trends than linear trends, a logarithmic transformation 

can be used on the outcome. Importantly, only one functional form can truly have parallel trends, 

so the modeling and estimand choices determine the validity of the causal assumptions made.
24

 

 Recently, literature has extensively investigated DiD in cases where there are units with 

different exposure onset times (e.g., “staggered treatment adoption”; see Figure 1B).
25

 The 

TWFE model is subject to biased estimation of the ATT under this setting as the unit and time 
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fixed effects do not properly capture treatment effect heterogeneity.
21,25

 Various approaches have 

been proposed to ameliorate this problem in the DiD and related stepped-wedge trials 

literature;
26–30

 these include different estimators and explicit weighting of time- and unit-specific 

estimators.
3,26,27

 

Synthetic Control Method 

 The SCM, developed for comparative case studies, has also become a common method 

for policy evaluation.
12,31

 The core of the design is modeling the counterfactual outcome of the 

exposed unit using a weighted average of the unexposed units (see Figure 1C). For a setting with 

one exposed unit and n unexposed units (with outcomes in period t denoted 𝑌1𝑡 and 𝑌01𝑡, … , 𝑌0𝑛𝑡, 

respectively), the estimator for the ATT in period t is: 

𝜃𝑡 = 𝑌1𝑡 −∑𝑤𝑖𝑌0𝑖𝑡

𝑛

𝑖=1

, 

where {𝑤1, 𝑤2, … , 𝑤𝑛} are nonnegative weights summing to 1. These weights are chosen by 

minimizing the pre-exposure difference between the outcomes of the not-yet-exposed unit and 

the weighted average of the outcomes of the unexposed units; minimizing covariate differences 

can also be incorporated.
3,31,32

 

 The major assumption of SCM is that these weights are stable, in the sense that a 

weighting scheme that matches the pre-exposure outcome trends well will also give an unbiased 

estimate of the potential outcome after the exposure time point.
31

 A long pre-exposure time 

series on which to optimize the weights provides the best justification for this assumption under 

many data-generating processes.
31

 For multiple exposed units and/or multiple post-exposure 

periods, the individual estimators can be combined to target the desired estimand.
29,33

 

Extensions of the Synthetic Control Method 
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 One reason for the growth of SCM in comparative case studies is its interpretability: all 

unexposed units have a nonnegative weight showing their contribution to the estimated 

counterfactual, allowing discussion of the reasonableness of the counterfactual. However, this 

also imposes restrictions on the model; SCM does not work when the outcomes of the exposed 

unit fall outside the convex hull (loosely, the range) of the unexposed units’ outcomes.
31

 

Thinking of past outcomes as the “adjustment variables”, this requirement is roughly analogous 

to positivity requirements in cohort studies: adjustment fails if there are combinations of 

covariates for which there are only exposed units.  

 Several extensions of SCM—including the generalized SCM
34

, augmented SCM (see 

Figure 1D)
35

, and Bayesian structural time series model
36

—trade off some interpretability by 

allowing outcome modeling and extrapolation outside of the convex hull. This allows the use of 

more control series, including those on different scales than the outcome itself.
37

 This 

extrapolation, however, can lead to bias, especially when there are few pre-treatment periods or 

unexposed units.
34

 

Quantifying Uncertainty and Negative Controls 

 Pharmacoepidemiologic studies require not just point estimates but also quantification of 

uncertainty, often through p-values, confidence intervals, or Bayesian alternatives.
38

 For quasi-

experiments, this can be more challenging, as they often involve one or a limited number of 

exposed observations, and rarely form a sample of an identifiable study population. Because of 

this, model-based estimates of variability—even in cases when they can be computed, such as 

regression-based DiD and generalized SCM—may not have the desired interpretation or may 

require additional design-based assumptions.
27
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 Beyond statistical inference, it is desirable to quantify the causal or model-based 

uncertainty. Negative controls, sensitivity analyses, and robustness checks provide a means to 

assess the required assumptions to some extent. These include assessing the validity of the 

assumptions for the particular setting through models and graphical inspection of pre-exposure 

time trends, as well as assessing the model performance in settings with known effects.
17

 

Repeated negative controls—often called placebo tests or dummy analyses—conducted 

for different time points (where no change in exposure occurs), different units (i.e., only using 

untreated units), or different outcomes (where the exposure should have no effect) generate null 

distributions using cases that should identify effects of zero.
3,31

 Comparing the observed estimate 

to these distributions allows hypothesis testing. Bayesian frameworks are also feasible, but may 

be sensitive to the prior distributions used.
36

 Properly reporting and interpreting these measures 

of uncertainty remains a challenge for these quasi-experimental methods, especially as they are 

applied to new fields.    

CASE STUDIES: QUASI-EXPERIMENTAL VACCINE EVALUATION 

Case studies of the use of DiD and SCM in vaccine evaluation can illuminate the benefits 

and challenges of these designs. Vaccine evaluation studies demonstrate the use of large-scale 

routinely collected data sets in the context of exogenous variation to identify key public health 

effects as a supplement to randomized trial evidence or when it is not available. They also show 

potential pitfalls: the risk of concurrent events and misspecification leading to bias and the 

limited generalizability of targeted estimands.  

Case 1: SCM Analysis of Meningococcal Vaccines (Prunas et al. 2022) 

 Prunas et al. analyzed the impact of early childhood meningococcal vaccination programs 

in Brazil and England in the 2010s (see Table 1).
39

 Real-world estimates of vaccine effectiveness 
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for hard-to-predict and highly variable diseases like invasive meningococcal disease are 

challenging, making quasi-experiments particularly useful. Using SCM on the logarithmic scale 

with Bayesian time series modeling, the authors compared meningococcal disease incidence after 

the program roll-out to a synthetic control constructed from time series of other (non-targeted) 

diseases and the targeted disease in older age groups who were ineligible for vaccination. 

To demonstrate the value of the method, the authors conducted placebo tests using other 

quasi-experimental designs and found that the SCM better captured seasonality and non-linear 

time trends; notably it avoids the need to specify a parametric time trend. It thus likely suffers 

from less bias in the desired analyses, although there could still be extrapolation bias due to the 

time series modeling.
32,36

 

 Within-region controls (here, time series of non-targeted populations and outcomes) are 

particularly valuable for quasi-experimental evaluation of vaccines and drugs. By avoiding 

comparisons across geographic areas, they mitigate the risk of bias due to concurrent events or 

changes. However, they come with a potential increased risk of spillover or contamination, 

especially in infectious disease settings.
40

 For the non-targeted age groups, bias could be caused 

by indirect protection of the vaccine (i.e., a younger child receiving the vaccine is less likely to 

infect an older child in the household). For the non-targeted diseases, there is perhaps less risk of 

bias, but it could still occur due to off-target effects of vaccination or changes in health-seeking 

behavior and diagnosis in the wake of the vaccination policy. The authors used placebo tests and 

sensitivity analyses that dropped the older age groups as candidate control series, finding robust 

results that suggest these biases were minimal in this setting.
39

 

 The results demonstrated effectiveness of the vaccination program against the targeted 

infections. Within each country of analysis, results on different early childhood age groups 
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showed remarkable similarity, indicating that there may be some generalizability of these effects. 

However, as ATT estimands, these may still not be appropriate to transport to other countries 

with different infection risks. On the other hand, these estimates assess the overall effect of the 

program, rather than the individual-level direct effect, so can provide an additional piece of 

evidence that is rarely achieved in pre-authorization trials.
41

 This is useful for public health 

policy-makers as real-world evidence of both the vaccine itself and the vaccination program.
42

 

DiD Analysis of an Off-Target Vaccine Against COVID-19 

 Early in the COVID-19 pandemic, researchers sought to use existing drugs and vaccines 

to prevent infection, illness, and severe outcomes until COVID-19-specific drugs and vaccines 

could be developed and authorized. The bacille Calmette-Guérin (BCG) vaccine against 

tuberculosis was one such candidate because of its hypothesized off-target effects
43

, which were 

supported by cross-sectional analyses showing better COVID-19 outcomes in countries with 

high BCG vaccination coverage.
44

 While randomized controlled trials would eventually occur in 

specific populations
43

, the emergency situation called for interim evidence to confirm or repute 

this hypothesis. A preprint by Matsuura et al. in 2020 re-examined this hypothesis with a DiD 

analysis using existing country-level data (see Table 2).
44

 

The authors identified countries that changed BCG vaccination recommendations at some 

point in the past and determined for various age groups in each country whether they were in a 

national vaccination cohort or not. They then conducted a TWFE analysis of the relationship 

between being in a BCG vaccination cohort and the log of confirmed COVID-19 cases for that 

age group and country, finding no protective effect of the vaccine.
44

  

 In this study, incorporating within-country controls helped mitigate the bias of comparing 

across countries cross-sectionally. However, the use of age cohorts as the distinguishing feature 
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risks contamination—as individuals of different ages interact and may provide indirect 

protection—and concurrent events, since many non-pharmaceutical interventions and 

recommendations in the COVID-19 pandemic were targeted to specific age groups. 

Identification for this design requires that the difference in log-cases between age cohorts would 

be constant (parallel multiplicative trends) across countries absent differential BCG vaccination 

policies. This would be threatened by differential age-targeted policies. 

 As in the previous study, the generalizability of the ATT is limited, since it is specific to 

the age cohorts and countries studied, as well as the time since BCG vaccination inherent in 

those age groups. However, the staggered adoption that occurs in this setting (different countries 

changed vaccination rules for different age cohorts) risks a larger problem of bias or incorrect 

interpretation of the ATT. The estimate given by the TWFE model is a weighted average of 

individual effects in each country-age cohort combination, with some given potentially negative 

weights.
21

 Careful specification of the estimand and the analysis method in quasi-experimental 

analyses, especially with staggered adoption, is thus crucial. In this case, individual two-by-two 

DiD analyses may be more useful, providing a range of estimated treatment effects in the 

different age group-country combinations.
21,45

 

The challenges of estimand interpretation and generalizability limit the internal and 

external validity of this approach. Nonetheless, it provided useful exploratory evidence that 

controlling to some extent for country-level factors could account for the correlation observed in 

a cross-sectional analysis. As this negative finding was borne out by a randomized controlled 

trial
43

, this study provided immediate useful interim evidence before that trial was concluded. 

DiD and SCM Analyses of the Indirect Protection of a COVID-19 Vaccine ORIG
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 After the authorization of COVID-19 vaccines to prevent symptomatic and severe illness 

in adults, questions remained about the effectiveness of the vaccines in providing indirect 

protection by preventing infection and transmission.
41

 Winner et al. sought to assess the indirect 

protection of children via adult vaccination by comparing infection rates among Austrian 

children in the district of Schwaz—which had high adult vaccination uptake due to a campaign 

during a localized outbreak— to other districts with much lower rates as of March 2021. They 

used both a SCM analysis with other Austrian districts as controls and DiD analyses comparing 

Schwaz municipalities to neighboring municipalities outside the district (see Table 3).
46

 All 

analyses reported strong indirect protection of children.
46

 

 With a clear time point for the mass vaccination campaign, quasi-experimental methods 

are a natural design for this setting, and the neighboring municipalities and other districts in the 

country form a large pool of potential controls. Selecting unexposed units within the same 

country increases the plausibility of similar non-pharmaceutical interventions and other policies, 

supporting the assumptions of stable weights and parallel trends. The risk of cross-border 

contamination through indirect protection remains but would, if anything, yield conservative 

estimates. Negative controls included an in-space placebo test for SCM (i.e., using the same 

method on non-targeted districts to create a null distribution) and assessment of pre-exposure 

parallel trends for DiD.
46

 

 While policies spurred by a particular need create variation, there is risk in using them as 

quasi-experiments. In this case, a large outbreak in Schwaz spurred the vaccination campaign. 

This creates concurrent events and anticipation: the past outbreak and the vaccination both 

influence infection dynamics going forward and may violate the assumptions needed for these 

methods.
8
 The authors sought to use districts with similar prior infection trends to mitigate this 
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bias. Parallel trends could also be threatened by the use of linear functional forms for a non-

linear outcome like infections, although the authors used both a linear TWFE model and a 

logarithmic two-by-two DiD model here.
8,17,47

  

Once again, the results are highly contingent to the campaign and the setting in which it 

was enacted. The differential outcomes result from both the vaccination itself and any changes in 

behavior that may have resulted from a mass vaccination campaign; this point is well-described 

in the quasi-experimental literature for policy evaluation.
1,19

 For pharmacoepidemiologic 

purposes, then, this makes it difficult to ascribe the full effect to the pharmaceutical itself in such 

cases. In addition, indirect protection in infectious disease outbreaks is specific to the prior 

evolution of the outbreak and the population at risk, limiting the generalizability and 

interpretability of estimates.
23,40,48,49

 Nonetheless, the finding of a large indirect effect could 

inform public health practice and motivate the study of this effect in other settings, even if 

precise estimates are not transportable.
41,42

 

DISCUSSION 

 Quasi-experimental methods provide a promising set of designs for 

pharmacoepidemiology. The designs discussed here, among others, provide a class of 

observational study designs that can target useful public health-relevant estimands and provide 

meaningful real-world evidence in advance of or as a supplement to randomized controlled 

trials.
14,50,51

 In the case of vaccines, for example, these designs can identify potential off-target 

effects of pharmaceutical products, encouraging further research into those effects,
44,51

 and 

identify rare safety signals through the use of large, routinely-collected data.
52

 In addition, these 

studies can provide important post-marketing evaluation of the effects of products on their target ORIG
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outcomes in actual use, including indirect effects and changing effectiveness over time as 

conditions change.
53,54

 

 By avoiding the need to measure and model all confounders between exposure and 

outcome, quasi-experimental methods can achieve high internal validity with routine data 

sources.
3,4,32,52

 This, however, requires other counterfactual assumptions, such as parallel trends 

or stable weights. Justifying these assumptions, especially the appropriate functional form, 

requires an understanding of the setting and likely effect.
8,17,24

 As seen in the case studies, both 

linear and logarithmic scales are used in vaccine evaluation studies, leading to different 

assumptions and different estimands. 

 Moreover, spillover and contamination of control units by the exposure and anticipation 

or lagged effects of the intervention can cause bias, often towards the null.
8,27,32

 For 

pharmacoepidemiology, this could occur through off-label prescribing or, as in the vaccine cases, 

indirect effects within networks and communities. Attributing the observed causal effect to the 

exposure also requires a lack of concurrent events in the study units, which may be threatened by 

changes in behavior that co-occur with pharmaceutical interventions, like behavior changes that 

follow vaccination.
5,8,9,17

 

 As in all medical studies, understanding the estimand targeted by these methods is crucial 

to properly using the evidence.
55

 When aggregate population data are used, these methods target 

aggregate or population-level effects, and thus cannot be transported to individuals.
19

 But this 

also provides useful real-world evidence, such as the overall effect measure in vaccine studies, as 

seen in the case studies.
23

 This is rarely targeted by randomized trials and provides useful 

additional regulatory and public health evidence.
41,42,53
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ATT estimands from quasi-experimental studies, however, are specific to the setting, 

exposure, outcomes, and exposed unit(s), as well as the contrast identified and other statistical 

analysis choices. Since the exposed units are rarely randomly selected (i.e., the mass vaccination 

campaign in Schwaz occurred because of a prior outbreak
46

), the ATT differs from the average 

treatment effect that is usually targeted by randomized trials and used in regulatory decisions.
56

 It 

may be of specific interest in safety studies, as it represents the effect of removing the exposure 

from all exposed units (e.g., compare to
6
). In general, however, it may be less transportable to 

populations yet to be exposed or require further assumptions.
5,16

 

 Compared to other observational study designs, quasi-experimental designs tend to trade 

away some external validity for internal validity, although these aspects should ideally be 

considered in concert.
3,57

 Researchers need to be careful about generalizing results of these 

methods to other settings and populations, especially for outcomes that have marked 

spatiotemporal patterns (e.g., infectious diseases) or for populations with specific health needs 

and vulnerabilities (e.g., specific age groups or people with co-morbidities).
19

 

Achieving the potential benefits of these designs will require further research and careful 

reporting and interpretation. The general methodology of these designs in the field of 

pharmacoepidemiology—as well as how to report results and place evidence in the context of 

other studies routinely conducted in the field—will be important for ensuring validity and 

appropriate interpretation.
9,11

 Connecting the literature across various disciplines will improve 

uptake of the most appropriate methods as well. Moreover, research on the most appropriate 

designs for specific settings, considering the populations, interventions, and outcomes, is 

crucial.
50

 This can include simulation studies in those settings to observe the relationship 

between estimates and true estimands.
15
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For example, quasi-experimental vaccine evaluation studies will need to determine 

appropriate lag times, functional forms, and time frames for the necessary DiD and SCM 

assumptions to hold.
14,52

 This can build on the existing health policy and stepped-wedge trials 

literature.
8,47,48

 Understanding and communicating the tradeoffs of identifying population-level 

effects but potentially losing generalizability will be key to appropriately contextualizing this 

evidence. 

Negative controls, placebo tests, and sensitivity analyses also have an important role to 

play. Assessing methods for sensitivity to the selection of control units and time periods can 

inform both internal and external validity. Quantitative placebo tests can also allow the reporting 

of causal uncertainty alongside statistical uncertainty.
3
 Investigators can improve generalizability 

by using multiple populations (as in the meningococcal vaccine case study
39

), different 

methodological approaches or models (as in the COVID-19 vaccine case study
46

), or multiple 

units and exposure points (as in the BCG vaccine case study
44

). The latter, however,  targets an 

estimand that averages potentially heterogeneous treatment effects, which may or may not have 

greater generalizability—depending on the setting—and can be statistically inefficient.
21,30,48

 The 

proposed alternatives vary in their targeted estimands, required assumptions, and statistical 

properties.
25–27,45,58

 Investigation of the assumptions and relative performance of these methods 

in specific pharmacoepidemiologic settings (see, e.g.
8,9,17,47

), alongside the appropriate reporting 

of these challenges, is needed. 

 Quasi-experimental methods can alleviate some of the challenges of 

pharmacoepidemiology, while introducing others. Understanding and using them provides 

another tool for regulators, physicians, and public health policymakers to understand the benefits 

and risks of drugs and biologics. 
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TABLES 

Table 1. Summary of Meningococcal Vaccine Analyses in Prunas et al. 2022. 

Abbreviations: CrI, credible interval; MenB, meningococcal serogroup B; MenC, meningococcal 

serogroup C; SCM, synthetic control method  

 Brazil Analysis England Analysis 

Research Question Did meningococcal vaccination programs reduce early childhood 

invasive meningococcal disease incidence? 

Exposure Within the target age group 

(<1-year and 1–4 years) of the 

MenC vaccination program 

Within the target age group 

(18–51 weeks and 1-year-old) 

of the MenB vaccination 

program 

Outcome Total MenC cases (monthly) Total MenB cases (quarterly) 

Setting Brazil, 2007–2013 England, 2011–2019 

Control Series Cases for various off-target infectious diseases in target age 

group; outcome of interest in non-targeted age groups  

Method SCM with Bayesian variable selection 

Scale Logarithmic 

Identification 

Assumption 

Weighted average of control series is the expected outcome absent 

vaccination program 

Results Vaccine effectiveness: 

 69% (95% CrI: 51, 80) in 

<1-year group 

 64% (95% CrI: 55, 70) in 

1–4 year group 

Vaccine effectiveness: 

 75% (95% CrI: 69, 80) in 

18–51-week group 

 72% (95% CrI: 65, 79) in 

1-year-old group 

Negative Controls/ 

Placebo Tests 
 Models tested on non-targeted age groups and compared to 

other methods 

 Sensitivity analyses excluding non-targeted age groups as 

control series 
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Table 2. Summary of BCG Vaccine Off-Target Effects vs. COVID-19 Analysis in Matsuura et 

al. 2020. 

Abbreviations: BCG, bacilli Calmette-Guérin; COVID-19, coronavirus disease 2019; DiD, 

difference-in-differences; TWFE, two-way fixed effects  

Research Question Did prior BCG vaccination recommendation reduce COVID-

19 incidence? 

Exposure Within age-group cohort covered by national BCG 

vaccination recommendation 

Outcome Confirmed COVID-19 cases per 1,000 

Setting Various countries, unknown dates of analysis for outcome 

Control Series Outcome of interest in age group cohorts not included in 

national BCG vaccination recommendations 

Method DiD TWFE model, with country and age-group fixed effects 

Scale Logarithmic 

Identification Assumption Expected ratio of infection rates across age-groups and 

countries are equal absent BCG vaccination recommendation 

Results Do not support hypothesis of protective effect of BCG 

vaccine 

Negative Controls/ 

Placebo Tests 

None reported 

Additional Details  Includes BCG strain as a covariate to address hypotheses 

generated from cross-sectional analysis of countries 

 Exposure onset is by age cohort, not calendar time 
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Table 3. Summary of COVID-19 Vaccine Indirect Protection Analyses in Winner et al. 2022. 

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; DiD, difference-

in-differences; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SCM, synthetic 

control method; TWFE, two-way fixed effects  

 SCM Analysis DiD Analysis 

Research Question Did a mass vaccination campaign in adults reduce COVID-19 

incidence in children? 

Exposure Within ineligible age cohort (under 16 years old) in the district 

of Schwaz 

Outcome Cumulative daily SARS-CoV-2 infections per 100,000 

Setting Schwaz District of Austria, January–May 2021 

Control Series Outcome of interest in other 

districts 

Outcome of interest in 

bordering municipalities 

Method SCM using infection history, 

population size, geographic 

area, and number of 

municipalities as covariates 

DiD, two models: 

 TWFE (municipality and 

week), with effect size 

varying by week 

 Two-by-two, averaging 

across weeks 

Scale Linear  Linear (TWFE) 

 Logarithmic (two-by-

two) 

Identification Assumption Weighted average of control 

series is the expected outcome 

absent vaccination campaign 

Additive (TWFE) or 

multiplicative (two-by-two) 

change in expected outcome 

pre- to post-campaign is the 

same across municipalities 

Results Vaccine effectiveness: 

675.3 avoided infections per 

100,000 children in Schwaz 

(95% CI: 146.9–1,232.6) 

Vaccine effectiveness: 

 Significant decrease after 

second dose in campaign 

(TWFE) 

 64.5% (95% CI: 30.2, 

82.0) (two-by-two) 

Negative Controls/ 

Placebo Tests 

In-space placebo test Pre-exposure trends 

Additional Details All analyses reported results also for adults aged 16–50 (targeted 

by vaccination program and thus expected to exhibit a larger 

effect) 
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FIGURES 

 

Figure 1. Schematics showing simulated observed and counterfactual data for four quasi-

experimental methods: DiD (A), DiD with staggered adoption (B), SCM (C), and augmented 

SCM (D). Vertical lines represent the beginning of exposure in exposed units/groups. Black 

dotted lines (A,B) and gray shaded regions (C,D) represent estimated effects. Note that different 

counterfactuals are possible with additional assumptions (B) and that augmented SCM is shown 

here when the exposed unit lies outside of the convex hull of the unexposed units (D). 

Abbreviations: DiD, difference-in-differences; SCM, synthetic control method 
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