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Abstract

The following paper describes a steady-state model of concurrent choice, termed the active

time model (ATM). ATM is derived from maximization principles and is characterized by a

semi-Markov process. The model proposes that the controlling stimulus in concurrent vari-

able-interval (VI) VI schedules of reinforcement is the time interval since the most recent

response, termed here “the active interresponse time” or simply “active time.” In the model

after a response is generated, it is categorized by a function that relates active times to

switch/stay probabilities. In the paper the output of ATM is compared with predictions made

by three other models of operant conditioning: melioration, a version of scalar expectancy

theory (SET), and momentary maximization. Data sets considered include preferences in

multiple-concurrent VI VI schedules, molecular choice patterns, correlations between

switching and perseveration, and molar choice proportions. It is shown that ATM can

account for all of these data sets, while the other models produce more limited fits. However,

rather than argue that ATM is the singular model for concurrent VI VI choice, a consideration

of its concept space leads to the conclusion that operant choice is multiply-determined, and

that an adaptive viewpoint–one that considers experimental procedures both as selecting

mechanisms for animal choice as well as tests of the controlling variables of that choice–is

warranted.

Introduction

One of the core assumptions underpinning models of choice originating from the behaviorist

tradition is that animals choose between independent, molar distributions of reinforcement.

For instance, the statement that a subject “chose the VI 20-s schedule three times as often as

the VI 60-s schedule” would not be judged controversial. This assumption that choice is “of”

independent, molar reinforcement schedules is captured best by the well-known matching law

[1]. Formally, the matching law has been generalized using Eq 1 [2]

log
B1

B2

� �

¼ alog
R1

R2

� �

þ logb ð1Þ

where B1 and B2 stand for the frequencies of two behaviors, R1 and R2 stand for the contingent

reinforcement frequencies associated with B1 and B2, b represents any bias that the animal

might have for one of the two reinforcers, and a represents the sensitivity of the individual to
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the ratio of reinforcement frequencies. In this generalized form, the matching law describes a

wide range of molar choice behavior (see [3]). It has been documented with reinforcers that

differ in magnitude, with spatial responses, and temporal responses [4–6]. Further, in describ-

ing how groups of animals distribute themselves across patches of resources, the matching law

also applies, and is known as the “ideal free distribution.”

There is no doubt, then, as to the descriptive utility of the matching law. However, its

descriptive success has led to the assumption that Eq 1 also provides the outlines of an under-

pinning mechanism. This jump from the descriptive to the mechanistic can be seen at both the

procedural and the theoretical levels. For example, in the operant laboratory the changeover

delay, or COD, is a commonly used procedural variable that exists solely to increase the hypo-

thetical control exerted by programmed schedule values [7]. Similarly, at the theoretical level,

the assumption that choice is under the control of independent, molar reinforcement distribu-

tions lies at the heart of melioration [8, 9], scalar expectancy theory [10, 11], and certain Mar-

kov chain models of choice [e.g., 12, 13].

An alternative view of the matching law, however, recognizes that the relation it describes is

multiply determined, and therefore, the operative mechanisms underpinning the law will be

highly dependent upon the environmental arrangement. More generally, this view of choice

behavior, assumes that the mechanisms driving choice are adaptive responses to particular

environmental configurations [14–21]. Such a view tends to emphasize the moment-to-

moment, or molecular, control of choice, contextual contingencies, and the perceptual con-

straints of a given organism. The following paper uses this adaptive framework in order to out-

line a model for choice behavior under concurrent variable-interval (VI) VI schedules of

reinforcement. The model is termed the active time model, or ATM. ATM first assumes that

the complex temporal environment of typical concurrent VI VI schedules make interval tim-

ing difficult, and hence that behavior is under the control of only the most recent interresponse

time, termed “active time.” Secondly, the model utilizes Markov “states” to define contextual

contingencies and a stochastic process in which stays and switches are assumed to be the

selected response unit.

The presentation of the model is broken into two sections. In the first section, ATM is

briefly described and its core assumptions empirically supported. In the second section four

seemingly contradictory data sets are considered. These data sets are matching [1], patterns of

interresponse time distributions [22, 23], the correlations of runlengths (i.e., perseveration) to

switch probabilities [12, 24, 25], and preferences observed during probes of multiple concur-

rent VI VI schedules [26–30]. I show that ATM successfully accounts for all four of these data

sets, while models such as melioration, a version of scalar expectancy theory, and momentary

maximization do not.

The active time model

ATM is a steady-state, molecular model of concurrent VI VI choice. It suggests that the selec-

tion pressures put in place by typical concurrent VI VI experimental contingencies, as well as

discrimination constraints related to both procedural variables and the organism in question,

encourage subjects to use the time since the most immediate response in order to determine

where the next response will occur. In other words, for ATM each response is a temporal

marker, and the interval after this marker stochastically controls the next response. In the ter-

minology of the model, the controlling variable is termed the active IRT or “active time.”

While engaging with an environment, an organism could potentially track a multitude of

time intervals that trigger and reset. In a typical two-choice, two-schedule arrangement there

are two types of interresponse times (IRT) that are highly relevant: active time and background
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time. As just mentioned, active time corresponds to the time since the most recent schedule

choice, while background time refers to the time since the alternative schedule was chosen by

the subject. Fig 1 illustrates these two classes of IRT and their significance. Namely, under con-

stant probability VI schedules these two classes of IRT directly determine reinforcement prob-

abilities via Eq 2 (or approximations [31])

Pi ¼ 1 � e� ti=li ð2Þ

where Pi, the probability of reinforcement at Choice i depends upon the time, ti, since last

choosing Choice i and the average reinforcement rate, λi, assigned to Choice i. In order to

apply Eq 2 to concurrent choice experiments, one simply iterates Eq 2 for each choice. Fig 1,

for instance, shows how the probabilities of reinforcement change when an animal responds

solely at either of two alternatives in a concurrent VI 20-s VI 60-s schedule.

For simplicity, Fig 1 assumes a response every 6 s as in, say, a discrete-trial procedure. As

can be seen, at very short intervals active IRTs correspond to low probabilities of reinforce-

ment. In contrast, short active time intervals will be associated with relatively higher probabili-

ties of reinforcement at the background schedule. As both active and background IRTs

increase, the relative value of the associated reinforcement probabilities will depend on the

specific schedule values in place. However, regardless of schedule values, short active times

always correspond to lower reinforcement probabilities than those to be had at the background

schedule. Also, if the active schedule is relatively rich, then its reinforcement probabilities will

always grow at a faster rate than those at the background schedule. In such cases, an optimal

choice strategy, when responding at the relatively rich VI schedule, would be for the subject to

show a bias for switching at short active IRTs while staying after longer active IRTs.

Fig 1. Active and background interresponse times. The figure assumes that a subject responds at a fixed interval, and

shows the relationship between interresponse times (IRTs) and reinforcement probabilities during concurrent

variable-interval (VI) VI schedules of reinforcement. In this case, the subject responds solely on the richer of two

concurrent schedules of reinforcement. As it does so the time since the last peck to the alternative, or "background

IRT" increases, leading to a steady increase in the probability of reinforcement at the background schedule. Each

choice of the active schedule resets its IRT—the "active IRT"—which causes the probability of reinforcement at the

active schedule to reset to zero.

https://doi.org/10.1371/journal.pone.0301173.g001
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This relationship between when an animal responds and where it responds is at the core of

ATM. In skeletal form, ATM proposes that an IRT generator determines when the next

response will occur. Where this response will occur is then determined by an active time func-

tion that relates active time to switch-stay probabilities. This interaction between an IRT gen-

erator (when) and an active time function (where) is formalized in ATM by a semi-Markov

process combined with a renewal process [32].

Markov processes fall into a variety of categories, of which a semi-Markov process is a

somewhat complex member. However, all Markov processes rely on the fact that in the

described system behavior is controlled by a discrete set of environmental variables, or states,

and that the probability of moving from any given state to another depends solely on the resi-

dent state. Mathematically the Markov property is defined by

PðXnjX0; . . . ;Xn� 1Þ ¼ PðXnjXn� 1Þ ð3Þ

where P(Xn) gives the probability of being in state Xn. In words, the Markov property states

that the probability of being in state Xn, given past residence in any number of the preceding

states, depends only on the most recent state, Xn-1. If there were two states, i and j, then we

could say that Pij = (Xn = j | Xn-1 = i). The Markov property, then, allows us to create a transi-

tion matrix that perfectly describes the

behavior within a system. In a two-state system with states 1 and 2 our matrix would be as

follows

1 2

1

2

1 � p p

q 1 � q

0

B
@

1

C
A

ð4Þ

where p is the probability of moving from state 1 to state 2, and q is the probability of moving

from state 2 to state 1.

If the matrix provided in Eq 4 were sampled at regular, discrete time intervals, then we

would term the model aMarkov chain. For instance, if a pigeon responded once per second,

and switched between two choices with probabilities set by the matching law, then a Markov

chain could be used to describe the bird’s behavior. Pigeons, though, do not normally respond

at discrete, regular time intervals, and in fact many systems are best described in continuous

time. A Markov model describing a continuous time system is referred to as aMarkov process.
Unlike a Markov chain, the transition probabilities in a Markov process describe the probabil-

ity of moving from one state to another in some arbitrarily fixed, interval of time, Δt. That is,

the response unit in a Markov process is not so much discrete choices but rather allocated time

intervals. If we let N(t) be the process that generates these time intervals, then our transition

matrix for a two-state system would be

1 2

1

2

NðtÞð1 � pÞ NðtÞp

NðtÞq NðtÞð1 � qÞ

0

B
@

1

C
A

ð5Þ

In words the matrix states that when in State 1, a switch to State 2 occurs with a probability

p at each arrival of N(t). Conversely, when in State 2, a switch to State 1 occurs with a probabil-

ity q at each arrival of N(t).
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Since ATM describes behavior in continuous time it is related to a Markov process, and N
(t) is considered to be the process that generates active IRTs. In ATM, though, switch probabil-

ities are not fixed as shown in Eq 5. Rather, ATM assumes that while the organism resides in a

particular state, the probability of switching changes as a function of N(t), which is equivalent

to the time since the most recent decision of whether to stay or switch. Such a process is

termed a semi-Markov process [32]. A semi-Markov process is a generalization of the simpler

Markov process in which the assumption of constant transition probabilities, e.g., p and q

from above, has been removed. These points can be summarized as follows. Again, let N(t) be

the process that generates time intervals, and A(t) = AN(t) be the state-specific function that

describes how the probability of switching from that state to another changes as a function of

N(t). For ATM A(t) is termed the active time function, and our transition matrix for a two-

state system would be

1 2

1

2

NðtÞð1 � A1NðtÞÞ NðtÞA1NðtÞ

NðtÞA2NðtÞ NðtÞð1 � A2NðtÞÞ

0

B
@

1

C
A

ð6Þ

The matrix in Eq 6 states that active IRTs are generated according to the state-independent

function N(t). A(t), though, is state specific, so that the probability of switching from State 1 to

State 2 is given by A1N(t), while the probability of switching from State 2 to State 1 is given by

A2N(t).
Fig 2 summarizes Eq 6 in graphical format. To reiterate, ATM makes the following

assumptions:

1. State space. it assumes that an animal, at any given moment, is in a particular choice state

defined by experimental contingencies.

2. Active time control. Each state is associated with a state-specific active time function that

determines the probability of switching on a moment-to-moment basis, α and β in the fig-

ure. Response units, then, are “stays” and “switches.”

3. IRT generator. These moments, though, are themselves determined by a single, indepen-

dent IRT generator, N(t).

In summary, ATM assumes that an IRT generator will determine when the next response

will occur, and that a state-specific active time function will determine where this response

occurs. In a two-state environment, though, response units merely consist of “stay” and

“switch.”

Empirical support of core assumptions

Molecular control by active time. ATM’s core assumption is that active time is a primary con-

trolling variable of concurrent VI VI choice. In support of this assumption, Figs 3 and 4 pro-

vide active time functions drawn from discrete-trial, free-operant and multiple concurrent

procedures [24, 27, 29]. Fig 3 provides functions drawn from the relatively rich VI of a pair,

while Fig 4 provides functions drawn from the relatively lean VI. In every case subjects were

most likely to switch at short active times. In Fig 3 the predominant pattern is that as active

time increases, the probability of switching to the relatively lean schedule decreases. This fits

the hypothesis that subjects use active time as a “rule of thumb” for reinforcement probabili-

ties. Fig 4 provides a more complicated picture. In general, it shows that as active time
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increases at the lean schedule, the likelihood of switching remains high. However, in some

cases, the likelihood of switching out of the lean VI also decreases at longer active times.

Regardless, every subject in each of the three procedures shows correlations between active

IRTs and switch probabilities that are suggestive of active time control.

That IRTs can control behavior, i.e., serve as discriminative stimuli, has been well estab-

lished in other studies, as well. Shimp [33, 34], for example, differentially reinforced pigeons

for patterns of pecking that consisted of short and long IRTs. He then inserted matching-to-

sample probes in which pecks to a red key were reinforced after short IRTs, whereas after lon-

ger IRTs pecks to a green key were reinforced. Shimp found that pigeons were able to learn

and perform the matching-to-sample task at over 90% accuracy. Even after an 8 s. delay was

inserted between the IRT and the matching-to-sample probe, accuracy remained greater than

chance. Similarly, visual stimuli trained with similar rates of responding (i.e., short or long

IRTs) have been found to substitute for one another in matching-to-sample tasks, which sug-

gests that IRTs, rather than the visual stimulus, is the relevant controlling stimuli in such cir-

cumstances [35–37].

Studies have also found that IRT frequencies are responsive to reinforcement contingencies

[38–42]. Tano & Sakagami [42], for example, subjected rats to reinforcement contingencies in

Fig 2. A graphical representation of the active time model. ATM assumes that an independent interresponse time

generator N(t) determines when a subject will respond. The generated interval is then used in a semi-Markov process

in order to determine where the subject will respond. This later determination depends on the resident state of the

subject and crucially on a state-specific function, A(t) that relates a sampled interval to switch probabilities. The

resultant probability, a or b in this case, is used to determine the choice of the subject.

https://doi.org/10.1371/journal.pone.0301173.g002
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which molar feedback functions were flat and, therefore, similar to a VI schedule. Individual

IRTs, though, were reinforced in a manner similar to a variable ratio schedule of reinforce-

ment. In every case the rats emitted IRTs that were similar to those found under variable ratio

schedules. Similarly, it has long been known that the differential reinforcement of IRTs can

produce molar rates that approximate those of a VI schedule [40, 41].

That IRTs can control choice and be selected by reinforcement, therefore, is not controver-

sial. However, ATM does make the unique claim that of the two types of IRT extant in a typical

two-choice experiment, only the active IRT controls choice. In other words, ATM assumes

that there are limitations in a subject’s ability to discriminate multiple, overlapping IRTs dur-

ing concurrent VI VI experiments. The evidence for such a limitation is, in fact, mixed. Some

experiments have found that subjects are capable of discriminating between multiple, simulta-

neously occurring temporal intervals. For instance, in a situation in which two intervals start

Fig 3. Rich schedule active time functions. This figure shows the active time functions for the richer of six different

concurrent VI VI pairs drawn from three different procedures. Solid and un-filled labels indicate a VI pair whose

leaner partner is shown in Fig 4. A) Functions for six different pigeons experiencing a discrete-trial procedure [24]. On

the left subjects experienced a VI 20-s VI 60-s schedule, while on the right subjects experienced a VI 60-s VI 180-s

schedule. The time bins were< 4, 4–5, 5–6, 6–7, 7–8, and>8 seconds. B) Functions for three subjects trained first in a

VI 60-s VI 180-s schedule and then in a VI 20-s VI 60-s schedule [24]. The time bins are in 5-s intervals up to 4 s. C)

Functions for three birds trained with multiple concurrent, free-operant VI VI schedules and a Findley procedure [29].

The schedules utilized were a VI 30-s VI 60-s and a VI 60-s VI 120-s, and the time bins are in 25-s intervals up to 4 s.

https://doi.org/10.1371/journal.pone.0301173.g003
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in parallel, both rats [43] and humans [44, 45] produce behavior indicating that separate end-

points can be discriminated.

A concurrent VI VI procedure presents a much more complex interval timing structure,

though. Background and active IRTs do not start in parallel, although they do on occasion end

in parallel, and while the background IRT is accumulating, the active IRT might start and end

several times. Also, the stimulus trigger initiating each IRT is not an external event, but a

behavior that is common to both intervals (i.e., a key peck). Finally, the multiple IRTs in a con-

current VI VI schedule occur within the same sensory modality. Given this complexity, one

would expect temporal discriminations to be quite difficult during concurrent VI VI

Fig 4. Lean schedule active time functions. This figure shows the active time functions for the leaner of six different

concurrent VI VI pairs drawn from three different procedures. Solid and un-filled labels indicate a VI pair whose

richer alternative is shown in Fig 3. Relevant time bins are given in Fig 3. A) Functions for six different subjects

experiencing a discrete-trial procedure [24]. B) Functions for three subjects trained under a standard free-operant

procedure [24]. C) Functions for three birds trained with multiple concurrent, free-operant VI VI schedules and a

Findley procedure [29].

https://doi.org/10.1371/journal.pone.0301173.g004
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contingencies. Indeed, and in contrast with the active time functions shown in Figs 3 and 4, to

date there is no evidence that background IRTs control choice [12, 24, 25, 46].

Stay/switch response units. ATM not only claims that active time is a primary controlling

variable in concurrent VI VI schedules of reinforcement, it also assumes that the response

units that this stimulus controls are stays and switches. In other words, ATM assumes that the

frequency-dependent nature of concurrent VI VI schedules selects both the relative frequency

of switches and stays as well as when they occur. In contrast, some other popular accounts of

concurrent VI VI schedules assume that the primary response units are mutually exclusive

rates of responding to two or more schedules, and that the overall or local rates of reinforce-

ment from these schedules differentially select among these units [e.g., 8, 12, 47]. Whether

these differences are due to procedural variables will be considered later in the paper. Nonethe-

less, ATM’s assumptions concerning response units dovetail with MacDonall’s stay/switch

model [48–50] and by work done by others [51–53].

MacDonall’s stay/switch model is an increasingly supported molar model of choice that

conceives of each alternative as a state in which the subject either stays or switches. As such,

the model views the traditional concurrent VI VI schedule as consisting of four reinforcement

schedules. For example, in a VI 40-s VI 80-s schedule stayVI40 is reinforced with a VI 40-s

schedule and switchVI40 (i.e., switches out of the VI 40-s schedule) is reinforced with a VI 80-s

schedule. Conversely, stayVI80 and switchVI80 are reinforced with a VI 80-s and a VI 40-s

schedule, respectively.

For standard concurrent VI VI experiments, switch-stay contingencies will always be sym-

metrical. However, they need not be. One could, for example, arrange an alternative in which

stays were reinforced with a VI 40-s schedule, and switches were arranged with a VI 40-s

schedule, with a similar arrangement holding for the “VI 80” alternative. The question is

whether the generalized matching law (Eq 1), with an assumption of singular, schedule-

directed response units, can fit such an asymmetrical arrangement. The answer is, no. In con-

trast, the stay/switch model fits both the symmetrical and asymmetrical arrangement of con-

current VI VI schedules of reinforcement [49, 50].

That stays and switches are the primary response units of concurrent VI VI schedules is fur-

ther supported by work examining “hold” functions [52]. Concurrent VI VI schedules are

often programmed using a pre-determined set of intervals [e.g., 31]. If the subject is respond-

ing at one choice, and a reinforcer is determined to occur at the alternative, then that rein-

forcer is held until the subject claims it. This would correspond to a “hold function” of 1,

meaning that if a reinforcer is set up, it is always held until claimed. Jensen & Neuringer sys-

tematically altered the hold function–in essence altering the relative reinforcement probabili-

ties of switch and stay responses–and this led to changes in choice preference that correlated

with the relative probability that a switch would be reinforced. When hold functions

approached 0, choice tended to become exclusive to the richer VI schedule. Importantly, low

hold functions may be thought of as making concurrent reinforcer distributions more inde-

pendent of one another. This is, after all, the logic used to justify a changeover delay (COD).

Jensen & Neuringer’s approach, though, emphasizes the discrimination of stays and switches

rather than responses made to programmed reinforcer distributions, as is assumed by the tra-

ditional approach to matching (Eq 1).

Finally, the relevance of switch and stay response units is shown in work by Machado [53]

using frequency-dependent schedules of reinforcement. Frequency-dependent schedules, of

which concurrent VI VI schedules are a subset, are characterized by the differential reinforce-

ment of response units based on their relative frequency [54–56]. What Machado found was

that when response units were defined in terms of a single stay or switch, pigeons quickly

learned to maximize reinforcement by alternating L (left) and R (right) pecks. Further, when
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response units were defined in terms of two responses—LL, LR, RL and RR–some of the

pigeons learned to maximize reinforcement by emitting each pair once, in sequence (e.g.,

RRLLRLLR). When the response unit was defined by triplets, though, pigeons failed to learn

the optimal sequence. Instead, they emitted choices probabilistically. A similar result has been

found with budgerigars in which the response class consisted of call types [57].

Machado’s data suggests two things. First, switches and stays can be differentially rein-

forced. However, if subjects are unable to discriminate the relative rates of reinforcement for

different patterns of stays and switches, then they will come to emit stays and switches stochas-

tically. ATM adds to Machado’s account by suggesting that it is not just stays and switches that

are reinforced but rather stays and switches at particular times.

Context dependency and state space. One final assumption of ATM concerns the use of

a Markov framework and its assumptions of stochastic movement within a “state space.” Mar-

kov chains have been shown to be extremely useful for modeling a large number of physical,

biological, and behavioral phenomena [32, 58, 59]. Further, there is reason to believe that Mar-

kov models can be applied productively to concurrent VI VI choice [12, 13, 24]. At this point,

then, the question is no longer whether concurrent VI VI choice is stochastic, but whether the

use of a state space is necessary. Isn’t a state space simply equivalent to the number of variable-

intervals arranged in the environment?

The answer to this question is no. State space is largely dependent on the experimental con-

tingencies put into place by the experimenter. Fig 5 provides a state-space representation of

three common concurrent VI VI procedures. In the top diagram two states are given, each cor-

responding to a choice of either of two VI schedules. Cleaveland [24] found that such a two-

state representation was adequate to describe a discrete-trial experiment in which pigeons were

required to wait an interval of time between each choice. However, when birds were allowed to

respond freely (i.e., a free-operant procedure) Cleaveland found that additional states were

required in order to describe their behavior. He hypothesized that in the free-operant procedure

the first peck to a schedule is qualitatively different from all subsequent pecks to the schedule.

This finding relates to Machado’s work [53] described above, in that the free-operant procedure

seemed to allow birds to discriminate between pairs of responses (e.g., RL, LL, LR, RR), while

the discrete-trial procedure appeared to limit discrimination to single responses. Finally, the

lowest graphic in Fig 5 provides a hypothetical representation for a Findley procedure [60]. In

such a procedure, schedule stimuli appear on a single response key and a second key (CO)

allows the subject to switch back and forth between the schedule stimuli. Using such a proce-

dure, Williams and Bell [61] found evidence that choice was under the control of overall rates of

reinforcement. In contrast, using a free-operant procedure, Williams and Bell [30] found evi-

dence suggesting that choice was determined by learned patterns of switching.

A state space, then, reflects the controlling variables of an experimental procedure rather

than simply the variable-interval schedules, themselves. For ATM state spaces are defined by

active time functions and the discriminative stimuli that define the location of a particular

choice. However, it is very probable that given the appropriate stimulus environment, concur-

rent VI VI choice might be under the control of local reinforcement rates [8, 62], molar rates

of reinforcement [62, 63], reinforcement probabilities [54, 55], interreinforcement intervals

[64], response-reinforcement associations [65], reinforcement traces [5], or active times [24].

In other words, a procedural manipulation designed to test between two models, might not be

so much a “test of” as a “selection of” the models. The task, then, is not to specify themecha-

nism underpinning choice, but to delineate the relationship between environmental regulari-

ties and controlling variables–the state space—that describe behavior. A Markov framework

with its conception of states, in other words, is an essential element not just of ATM, but of

models of concurrent VI VI choice in general.
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Methodology

The first half of this paper described the active time model (ATM). It also discussed the

assumptions underlying ATM. These assumptions concern IRT stimulus control, stay-switch

response units, and a Markov framework that emphasizes the selective pressures exerted by

procedural variables. Empirical support was offered for each of these underlying assumptions.

The remainder of the paper compares the predictive results of ATM with three other models

of operant choice: melioration [8, 9], a version of scalar expectancy, termed SET* in this paper

[28], and momentary maximizing [22, 23, 54, 55].

General parameters

The simulations of all four models were programmed using the Xojo programming language.

Brief outlines of each model and the utilized, specific parameters are given below. All simula-

tions, however, were conducted with the following general assumptions and parameters:

Fig 5. Markov state representations for three types of concurrent VI VI procedures. A)Shows a first-order Markov

process which Cleaveland [24] found to fit a discrete-trial procedure. Here, the only discriminative stimulus consists of

a single schedule choice, e.g., L or R. B) Shows how a second-order Markov process represents the sequential

dependencies often found with free-operant procedures. C) A Markov representation for a Findley procedure [60].

Here the subject makes a choice via a single changeover key (CO) that controls the appearance of alternatives on a

second, schedule key. In some cases d, the probability of selecting a reinforcement schedule (R or L) is set to 1 [e.g., 30]

which forces the subject to emit the response pattern CO-L or CO-R. In other cases d is not determined by the

experimenter but by the subject [e.g., 27].

https://doi.org/10.1371/journal.pone.0301173.g005
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1. All simulations were of two-choice procedures commonly used in operant behavior studies.

2. Interresponse times (IRTs) were generated prior to a model’s decision rule being applied,

and the same IRT distributions were used for all four models.

3. For free-operant simulations response rates were programmed using an exponential func-

tion of form -ln(n)/λ + .2, where n is a random number drawn from the range 0 to 1 and λ
is the desired average response rate. Unless otherwise indicated in the results, a response

rate of 1/s was used for all simulations.

4. For discrete-trial simulations response rates were programmed using a Gaussian distribu-

tion with a mean of 6 s and a variance of 1. The distribution was truncated such that the

lowest value was 2 s and the highest value was 10 s.

5. The time to switch from one alternative to another alternative was set at 0.3 s. This time was

in addition to whatever IRT had been fed into the decision rule (i.e., “switches” cost an

additional 0.3 s).

6. Rewards were programmed to occupy 2 s of time.

7. Two separate clocks programmed reinforcer deliveries. When a reinforcer occurred at one

alternative, the clock for that schedule was reset and did not resume until the reinforcer

period was finished. However, the schedule clock at the non-reinforced alternative contin-

ued to run.

8. No changeover delay (COD) was simulated.

9. Simulations ran for 20,000 responses. The last 2,000 responses were saved to data files in

order to generate the clock spaces shown in the results (Figs 10 & 11).

Melioration-specific parameters

Melioration hypothesizes that the choice behavior of pigeons under concurrent VI VI sched-

ules of reinforcement is controlled by differences in local rates of reinforcement [8, 9]. Melio-

ration is derived directly from the matching law by noting that both behavioral frequencies

(Bi) among a set of alternatives and time allocation (Ti) to these alternatives tend to match con-

tingent reinforcement frequencies (Ri). That is for two alternatives,

B1

B2

¼
T1

T2

¼
R1

R2

ð7Þ

From Eq 7 it follows that matching holds when

R1

T1

¼
R2

T2

ð8Þ

or, in other words, when the rate of reinforcement per time spent at Alternative 1 equals the

rate of reinforcement per time spent at Alternative 2. By simply always choosing the alternative

with the higher local rate of reinforcement, an organism will tend to produce matching at the

molar level. It should be noted that melioration is silent as to the time window over which local

reinforcement rates are calculated. Therefore, in the simulations of this model windows of 15,

30 and 60 time units were utilized. In addition, the following two assumptions were made:

1. Local rates of reinforcement were calculated by creating an array of the last n (15, 30, 60)

instances of each of three variables: the VI choice, the IRT that had been generated just
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prior to the VI choice, and whether that choice resulted in a reinforcer. Local rates of rein-

forcement were then calculated by dividing the total number of reinforcers assigned to each

choice within the array by the sum of the IRTs assigned to each choice within in the array.

2. When local rates of reinforcement were equal to one another or both equal to zero, the sim-

ulated organism chose either alternative with a probability of 0.5

SET* specific parameters

Scalar expectancy theory (SET) emerged as a description of interval timing [10, 11], and its use

has been much extended since [64]. With regards to concurrent VI VI behavior, SET assumes

that concurrent VI VI choice is controlled by an expectation of time until food. Accordingly,

as an animal experiences concurrent VI VI schedules, SET hypothesizes that two independent

distributions of remembered interreinforcement intervals are created. At the moment of

choice, the animal samples its memory distributions, compares these samples, and chooses the

stimulus associated with the smaller interval.

Gibbon [28], proposed a variant of SET (termed SET* in this paper) that extends this frame-

work in an attempt to account for a broader range of data. SET* adds two features to SET.

First, it assumes that interreinforcement memory distributions, rather than directly determin-

ing choice, do so indirectly by establishing the overall switch probabilities associated with a

particular stimulus. Secondly, SET* assumes that these switch probabilities are sampled at a

rate that is proportional to the overall reinforcement rate for a pair of concurrent schedules. In

making predictions for SET*, therefore, the following assumptions were made

1. For Data Sets 1–3, SET* corresponds to a Markov process in which switch probabilities are

set by the ratio of molar reinforcement rates.

2. Contra Gibbon [28] it was assumed that each time interval generated by the IRT distribu-

tion corresponded to an overt response either staying or switching.

3. For Data Set 4, switch probabilities were multiplied by the ratio of overall reinforcement

rates from each trained pair of concurrent VI VI schedules in order to makes predictions of

the novel choice pairings described in this data set.

Momentary maximizing specific parameters

Momentary maximization [22, 23, 54, 55] hypothesizes that concurrent VI VI choice is con-

trolled by a comparison between reinforcement probabilities at each of the available alterna-

tives at the moment of choice. As mentioned earlier, reinforcement probabilities in concurrent

VI VI schedules are usually given by Eq 2. This leads to concurrent changes in reinforcement

probability as illustrated in Fig 1. In other words, momentary maximizing in reality assumes

that subjects are sensitive to changes in both the active and background IRTs. An animal fol-

lowing a momentary maximizing strategy simply selects the choice associated with the IRT

that has the highest momentary probability of reinforcement. Simulations of momentary max-

imization required only two assumptions:

1. After an IRT, reinforcement probabilities were calculated according to Eq 2.

2. To calculate the prospective reinforcement probabilities of choosing an alternative that

required a switch, the minimum switch time of 0.3 s was added to that choice’s IRT. This

addition was “hypothetical” in the sense that if the simulated organism chose to stay at the
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current alternative, this switch time was not added to the accumulating background interre-

sponse time.

ATM specific parameters

To simulate the results of the active time model, an average organism was created from past

experimental findings. Thus,

1. For the free-operant simulations used in Data Sets 1–3, active time switch functions were

created by averaging across the five subjects used in [24]. The average was only taken from

the VI 20-sVI 60-s schedule and involved 0.5-s bins up to 4.0+ s. The resultant function for

the rich VI was: .43, .36, .19, .13, .08, .08, .18, and .18. The function for the lean VI was: .90,

.90, .80, .75, .73, .72, .80, and .88.

2. For discrete-trial simulations used in Data Sets 1–3, active time switch functions were cre-

ated by averaging across the six subjects used in [24]. Time bins (s) were< 4, 4–5, 5–6, 6–7,

7–8, and> 8. The resultant function for the rich VI was: .5, .42, .31, .21, and .14. The func-

tion for the lean VI was: .63, .73, .79, .85, .89, and .85.

3. For Data Set 4 the predictions shown in Fig 14 were generated by using the average active

time functions listed above, as well as that for the VI 60-s schedule in the VI 60-s VI 180-s

pair in [24]. The VI 60180 function was: .32, .29, .25, .18, .14, .13, .13, and .13.

Data sets

Four data sets were selected over which to compare the simulated results of the four models.

These data sets are

Data Set #1: Simple two-choice matching [1],

Data Set #2: Patterns of interresponse time distributions [22, 23],

Data Set #3: Correlations between runlengths (i.e., perseveration) and switch probabilities

[12, 24, 25, 46]

Data Set #4: Preferences observed during probes of multiple concurrent VI VI schedules

([26–29].

In the results, each of these data sets is described along with the outputs generated by the

four models.

Results

Data set 1: Matching

In its most basic form, matching is the finding that animals tend to arrange their choices in

proportion to the relative amount of reinforcement each alternative delivers [1]. This molar

relationship describes a wide range of molar choice behavior from the laboratory [e.g., 3]. Fur-

ther, Houston [66] showed that the generalized matching law correctly fits the foraging alloca-

tions of pied wagtails in the wild. Finally, one can also show mathematically that in concurrent

VI VI schedules, matching produces the choice distribution that maximizes the overall rate of

reinforcement. Given its success, for a concurrent VI VI choice mechanism to be acceptable, it

must yield matching at the molar level.

Since melioration is directly derived from the matching law, it follows that it should pro-

duce molar matching. Table 1 shows that simulations of melioration across two concurrent

schedules do indeed produce choice proportions that approximate the scheduled reinforce-

ment ratios. However, Table 1 also shows that the degree to which melioration produces
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matching depends to a large extent on the time window over which local rates of reinforce-

ment are calculated. Keeping VI values constant, larger time windows will produce response

proportions that are more in line with the matching law, while shorter time windows trend

towards indifference (so-called “undermatching”). This effect of window size can be under-

stood intuitively. With a window of 1, local “rates” of reward are almost always 0, and choice

behavior would presumably be random (this would depend upon the specific implementation

of melioration). This would produce indifference between the two choices. As the time win-

dow for calculating local rates grows, a more accurate approximation of the actual, pro-

grammed schedules becomes possible. Thus, with a time window equal to the duration of a

session, the local rates would be equivalent to the programmed reinforcement rates divided by

the proportion of allocated time. For example, in the case of a concurrent VI 20-s VI 60-s

schedule reinforcement rates are 3/min and 1/min., respectively, which a large window would

accurately represent. Spending ¾ of the time at the VI 20-s schedule and ¼ of the time at the

VI 60-s schedule would produce equal local rates of 4/t. at each alternative. This, of course, is

the matching law.

As with melioration SET* is able to formally derive the matching law [64]. Given that VI

schedules are typically programmed according to a Poisson process, the experienced and

remembered interreinforcement intervals, despite the scalar property of variance, will conform

to exponential distributions. Imagine, therefore, two concurrent VI schedules VI1 and VI2. As

the animal experiences these two schedules it will establish two independent memory distribu-

tions with rates given by λ1 and λ2. The relative choice frequencies are given by the probability

that a memory sample, S, drawn from λ1 will be shorter than one drawn from λ2, or by

PðS1 > S2Þ ¼
l1

l1 þ l2

ð9Þ

What Eq 9 shows is that the probability of choosing VIi is given by the relative, remembered

rates of reinforcement. Since the remembered rates of reinforcement are proportional to the

actual, programmed rates of reinforcement, Eq 9 recapitulates the matching law. The simula-

tion of this result is trivial, namely because it simply requires the flipping of a coin weighted by

Eq 9. This will, by definition, produce perfect matching as is evident in Table 1.

Momentary maximizing, too, can be formally derived from the matching law. Eq 7, in addi-

tion to supporting melioration, also implies that when matching holds, reinforcement per unit

of behavior at Alternative 1 equals the reinforcement per unit of behavior at Alternative 2.

Table 1. Simulations of matching for four models of VI-VI choice.

Free Operant Discrete-Trial

Model Proportion rich Proportion rich

** VI20-VI60 VI60-VI180 VI20-VI60 VI60-VI180

Melioration 15 0.62 0.55 0.62 0.61

30 0.63 0.58 0.60 0.62

60 0.69 0.61 0.63 0.62

Momentary Max 0.67 0.68 0.71 0.71

SET* 0.75 0.74 0.75 0.75

Active Time 1/s 0.72 0.63 0.75 0.75

2/s 0.68 0.72 0.75 0.75

Provides proportion of rich schedule to lean schedule choice for model simulations. For melioration three windows were utilized over which local rates were calculated.

For ATM two response rates were simulated.

https://doi.org/10.1371/journal.pone.0301173.t001
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This is equivalent to stating that when matching holds, the probability of reinforcement at

Alternative 1 equals the probability of reinforcement at Alternative 2. Therefore, by always

choosing the alternative with the momentarily higher probability of reinforcement, an organ-

ism should tend to oscillate around matching at the molar level. In fact, Table 1 shows that for

the simulations considered here, momentary maximizing produced choice distributions that

were consistently below matching (i.e., undermatching). This is, in fact, an artifact. The simu-

lation used for this paper assumed a .3-s changeover interval after a decision was made to

switch. In other words, reinforcement probabilities were not perfectly tracked. Undermatching

is, however, a more robust finding than matching, at least for pigeons behaving under concur-

rent VI VI schedules of reward [3, 67].

Unlike melioration, SET* and momentary maximizing, whose predictions of matching

may be formally derived from a priori assumptions, ATM’s predictions strictly depend on the

active time functions measured from the actual behavior of a subject. As yet, there is no formal

derivation of these functions from reinforcement principles. However, as Table 1 shows, for

the simulations considered here, ATM consistently yielded predictions that approximated the

matching law as well as melioration and momentary maximizing. Like the latter two mecha-

nisms, ATM tended to produce undermatching. Further, as Table 1 indicates, the degree of

undermatching depended on the response rate used. A rate of 1 choice /s. produced choice

proportions closer to matching than a rate of 2 choices /s. The reason for this is that the differ-

ence between the rich and lean functions is greater at 1/s. than 2/s for the active time functions

used in these simulations (see Methods).

A strong prediction of ATM, then, is that changes in response rate will produce momentary

changes in molar choice proportions as a function of the existing, underlying active time func-

tions. In fact, an experiment by Misak & Cleaveland [68] produced just such a result. Fig 6 pro-

vides a schematic of the experimental logic as well as its essential data.

In their experiment Misak & Cleaveland trained pigeons on a discrete-trial, multiple con-

current VI VI procedure with a VI 20-s VI 40-s and a VI 40-s VI 80s. The logic of the experi-

ment was that, although the two VI 40-s schedules were objectively identical, the underlying

active time functions trained to their paired stimuli would be quite different. The VI 40-s stim-

ulus paired with the VI 20-s schedule would elicit a “lean” active time function, while the oppo-

site would be the case for the VI 40-s stimulus paired with the VI 80-s schedule (Fig 6A).

During a series of probes, the pigeons were presented with the two stimuli associated with the

VI 40-s schedules and either forced to respond at relatively long or relatively short intervals

(Fig 6B). As ATM predicts choice proportions during the “short probes” were close to indiffer-

ence, while choice proportions during the “long probes” showed extreme preference for the VI

40-s stimulus that had been trained in the VI 40-s VI 80-s schedule (Fig 6C). Such a result pro-

vides strong experimental evidence for ATM’s assertion that choice proportions obtained dur-

ing concurrent VI VI schedues—matching, undermatching and overmatching–are a function

of underlying active time switch functions.

Data set 2: Molecular structure of choice

All of the choice mechanisms considered in this paper can, in principle, generate concurrent

VI VI choice proportions that are found in the literature. This is not the case for data that

describing the molecular structure of choice under concurrent VI VI schedules of

reinforcement.

Whereas matching is derived from thousands of responses, molecular analyses of choice

look for controlling variables that act on individual responses or a handful of responses. Such

analyses have indeed found regularities in responding that is suggestive of molecular control.
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For example, the most frequent pattern observed with pigeons under concurrent VI VI sched-

ules is the pattern given by the ratio of the schedule values–a response pattern that when iter-

ated yields the matching law [55, 56]. VIs of equal value produce more alternations than any

other choice pattern. VIs with a 2:1 ratio (i.e., one VI schedule has an average programmed

rate that is twice the alternative) tend to produce choice sequences dominated by two pecks at

the rich schedule followed by a single peck at the poor schedule.

One way to account for these sequential dependencies is to note that they track reinforce-

ment probabilities on a moment-to-moment basis, a type of control termed molecular maxi-

mizing. The response structures predicted by momentary maximizing may be graphically

Fig 6. Misak & Cleaveland’s support of active time functions. As noted in the text after responding to a relatively

rich VI schedule, pigeons have been found to be more likely to switch after shorter than longer active IRTs. Conversely,

after responding to a relatively lean VI schedule, pigeons usually show a high probability of switching across all active

IRTs. A) In other words, at short active IRTs the difference between switching probabilities (dshort) for the relatively

lean and rich schedules would be small in comparison to switch probabilities after long IRTs (dlong). If switch

probabilities determine overall preference at suggested by ATM, then we would predict that pigeons would show more

extreme schedule preferences after long active IRTs than after short active IRTs. B) Misak & Cleaveland found just

such a result by utilizing probe trials in which a restricted portion of IRTs are allowed, and pigeons were given a choice

between stimuli previously paired with a relatively rich VI 40-s stimulus (VI4080) and a relatively lean VI 40-s schedule

(VI4020). C) The data revealed that during probes with short active times, birds trended towards indifference

(avg = 0.55). However, probes with long active times produced a strong preference for the VI4080 stimulus (avg = 0.71).

Such data strongly supports the hypothesis that choice proportions during concurrent VI VI schedules are a function

of active time functions.

https://doi.org/10.1371/journal.pone.0301173.g006
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represented if we define an indifference line at which the probabilities of reinforcement for the

two choices are equal [69]. Referring to Eq 2 and setting P1 equal to P2, yields

t1 ¼ t2
l2

l1

� �

ð10Þ

where ti is the time since the last response to Choice 1 or Choice 2, and λi is the programmed

reinforcement rate for Choices 1 or 2. Note that the slope of the indifference line in the resul-

tant clock space is given by the ratio of the programmed schedule values, λ2 /λ1. If t1 is greater

than t2, multiplied by this ratio, then the probability of reward for Choice 1 will be greater than

the probability of reward for Choice 2.

Graphically, a clock space represents every choice that a subject emits in terms of its tempo-

ral distance from the most recent choices to each of the two concurrent VI VI schedules. These

temporal distances correspond to the active and background IRTs shown in Fig 1. For exam-

ple, in Fig 7 if a subject responds at a fixed rate to the VI 60-s schedule this would produce a

single x-axis value, while the y-axis would increment with each choice. In other words, persev-

eration at a schedule produces a stream of points away from the axis that represents the IRT

for that schedule. Given Eq 10, in a clock space the choice represented by the nearest axis,

without crossing the indifference line, has the higher probability of reinforcement. Thus, in

Fig 7. Clockspace for concurrent VI VI. Shown is a clock space for a concurrent VI 60-s VI 180-s schedule. Eq 10

provides an indifference line that indicates all points in which the reinforcement probabilities are equal at the two

schedules. A point in a clock space indicates a single choice defined in terms of its temporal distance (i.e., IRTs) from

the most recent selection of each of the concurrent schedules. These IRIs correspond to the active and background ITs

illustrated in Fig 1.

https://doi.org/10.1371/journal.pone.0301173.g007
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Fig 7, the x-axis schedule (i.e., VI 60-s) will have the higher reinforcement probability at all

points below the indifference line, while the y-axis (i.e., VI 180-s) schedule will have the higher

reinforcement probability at all points to the left indifference line.

Momentary maximizing, as can be seen via Fig 7, predicts that if an animal responds at a

constant rate, then a single response sequence will emerge that is equal to λ2 /λ1. These were in

fact the most frequent response sequences reported by Shimp [55] and Silberberg et al. [56].

However, an animal need not respond at a constant rate, and in such circumstances momen-

tary maximizing does not predict a regular molecular response pattern. In order to determine

whether pigeons that do not respond at a regular rate are nonetheless adhering to a momen-

tary maximizing mechanism, Hinson & Staddon [22] developed a statistic,M, that captures

the degree to which a pigeon’s choice behavior tracks momentary reinforcement probabilities

(p).M is in essence the accumulated proportion of reinforcement probability differences

obtained at each choice in a session. The statistic is given by

M ¼
P
jðpi � pjÞjcorr

P
jðpi � pjÞjcorr þ

P
jðpi � pjÞjinc

ð11Þ

where |pi—pj|corr = Choice i when pi> pj or Choice j when pj> pi, while |pi—pj|inc if Choice i
when pj> pi or Choice j when pi> pj. If a subject’s behavior tracks momentary reinforcement

probabilities, M will approach 1.0. Behavior that is indifferent to momentary reinforcement

probabilities would produceM values of 0.5, while sub-optimal behavior would produceM
values less than 0.5.

Hinson & Staddon [22, 23] found that pigeons in free-operant concurrent VI VI situations

tended to produceM-values between 0.7 and 0.9 late in training. These findings were repli-

cated by Cleaveland [24]. Fig 8, for example, shows the averageM values for Cleaveland’s five

subjects under a free-operant concurrent VI 60-s VI 180-s schedule. As can be seen there is a

clear trend of increasing values. However, Cleaveland also found that pigeons in discrete-trial

Fig 8. Group M-values. The figure shows the average M-values for five birds run in a free-operant procedure and for

six birds run in a discrete trial procedure [24]. In both cases training involved a VI 60-s VI 180-s of reinforcement.

https://doi.org/10.1371/journal.pone.0301173.g008
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procedures tended to produceM values of approximately 0.50 as is also illustrated in Fig 8.M
values, though, only summarize the degree to which reinforcement probabilities might be driv-

ing choice behavior. They say nothing as to the actual patterns of responding. The latter,

though, are evident when one examines clock spaces.

Fig 9 provides representative clock spaces for a subject trained in a free-operant procedure

versus a subject trained in a discrete-trial procedure [24]. For clarity the clock spaces are sepa-

rated into those representing pecks made to the VI 60-s and those made to the VI 180-s sched-

ule. Cleaveland found no differences in the pattern of responding made to the lean, VI 180-s

schedule. Essentially, these clock spaces indicate that subjects tended to produce a single

response to the relatively lean schedule. Where the behavior generated by the two procedures

differs is with regards to preservation at the rich, VI 60-s schedule. Perseveration is indicated

Fig 9. Representative clock spaces from real data. The top panel provides a clock space created by a bird

experiencing a free-operant concurrent VI 60-s VI 180-s schedule of reinforcement. The lower panel provides a clock

space for a bird experiencing equivalent schedules in a discrete-trial procedure [24]. Every point indicates a single

peck, and the two plots for each bird separate these pecks into those made to the VI 60-s versus VI 180-s schedules.

Recall that a subject tracking momentary reinforcement probabilities should produce points below the indifference

line in the left-hand plot and above the indifference line in the right-hand plot. The given M-value of .84 suggests this

was the general pattern for the free-operant subject. Conversely an M-value of .46 is more suggestive of behavior that is

indifferent to momentary reinforcement probabilities.

https://doi.org/10.1371/journal.pone.0301173.g009
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in Fig 9 by a vertical stream of points in the VI 60-s clock space. For the discrete-trial proce-

dure, this stream continues well above the indifference line. Points at such a distance corre-

spond to large probability differences that factor into the denominator of theM calculation. In

contrast, the subject experiencing the free-operant procedure produced much shorter response

runs to the VI 60-s schedule, and hence, “mistakes” weighted the denominator of theM calcu-

lation to a lesser degree.

Of the choice mechanisms considered in this paper, only ATM accurately fits the molecular

structure of responding under free-operant and discrete-trial concurrent VI VI schedules.

Table 2 shows that across the simulated schedule values,ATM producesM values between 0.61

and 0.71 for the free-operant procedure, and between .51 and .54 for the discrete-trial proce-

dure. Although the values for free-operant procedure appear low, it should be remembered

that the simulations used in this paper applied an average active time function. Cleaveland

[24] showed that when the active time functions of individual subjects are used, the resultant

M values are extremely similar to those produced by real subjects. Finally, as can be seen in

Figs 10 and 11, the clock spaces generated by ATM show response patterns that match those

produced by real birds in the free-operant and discrete-trial procedures.

In contrast to ATM molecular maximizing is clearly violated by the behavior of birds under

discrete-trial VI VI schedules. Regardless of procedure, Table 2 shows that simulated choices

produce M values of 1.0. TheseM values translate into the clock spaces shown in Figs 10 and

11 in which responding is clustered below the indifference line for VI 60-s responses and

above the indifference line for VI 180-s responses. In other words, momentary maximizing

does not produce the preservation seen in Fig 9 for discrete-trial procedures.

Similarly, both SET* and melioration produceM values that are at odds with those reported

in the literature. In a two-choice procedure, SET* allocates choices in a stochastic manner that

is independent of IRTs. Therefore, it is not surprising that simulations of SET*, in every

instance, produceM values close to .5. These values translate into a free-operant clock space in

which points are not correlated with reinforcement probabilities. Interestingly, though, the

pattern of responses shown by a SET*mechanism in the discrete-trial simulation is not that

different from the pattern shown by actual birds. Melioration, however, fails to produce any

aspect of the molecular structure seen in real animals. With the parameters used here, meliora-

tion producedM values ranging from .19 to .26. These values are much lower than those

observed in real animals in either the free-operant or discrete-trial procedure. Furthermore,

Table 2. Probability maximizing for four models of VI-VI choice.

Free Operant Discrete-Trial

Model M-Value M-Value

** VI20-VI60 VI60-VI180 VI20-VI60 VI60-VI180

Melioration 15 0.26 0.31 0.24 0.31

30 0.19 0.21 0.21 0.21

60 0.2 0.17 0.2 0.17

Momentary Max. 1.00 1.00 1.00 1.00

SET* 0.45 0.46 0.52 0.45

Active Time 1/s 0.61 0.72 0.51 0.53

2/s 0.71 0.72 0.51 0.54

Provides momentary maximization approximations via the M-metric described in the text for model simulations. For melioration three windows were utilized over

which local rates were calculated. For ATM two response rates were simulated.

https://doi.org/10.1371/journal.pone.0301173.t002
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the clock spaces produced by melioration indicate that the mechanism generates runs of

responding at both VI schedules, rather than at only the relatively rich schedule. The reason

for this finding relates to the windows used in order to calculate local rates of reinforcement.

Relative to the window size, reinforcers were rare events. Local rates, therefore, tended to

change rather abruptly and by relatively large amounts.

Data set 3: Run-length and choice

The response sequencing summarized byM values and clock spaces is one type of molecular

choice data. Another involves the probability of switching away from an alternative given a

number of pecks at that choice. This latter variable is often referred to as run-length. It has

been well documented that switching probabilities are independent of run-length in pigeons

that are experiencing concurrent VI VI schedules [12, 24, 25, 46, 56]. That is, the probability of

switching out of one schedule in a concurrent VI VI experiment appears to be independent of

the number of pecks made to that schedule. Fig 12 illustrates this result with real birds

experiencing a concurrent VI 60-s VI 180-s schedule [24]. The plots show the probability of a

switch given the amount of time a bird has spent responding to a single alternative. In both

Fig 10. Simulations of free-operant clock space data. A free-operant concurrent VI 60-s VI 180-s schedule was

simulated using four choice models: melioration, SET*, momentary maximizing, and ATM. The resultant clock spaces

are given here for the last 2,000 choices of each simulation.

https://doi.org/10.1371/journal.pone.0301173.g010
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discrete-trial and free-operant procedures the plots are flat. For instance, in the free-operant

case, birds are just as likely to switch out a rich schedule after responding to it for 1 second as

they are after responding to it for 6 seconds.

Momentary maximizing does not predict the run-length data of real birds for the following

reason. As Fig 1 illustrates, when a bird responds at one schedule the reinforcement probability

of the background schedule grows. In other words, perseveration on one schedule is equivalent

to increases in the background IRT. Momentary maximizing predicts that as the background

IRT increases, the animal should become more likely to switch out of the active schedule.

Allowing for errors by the animal in mapping IRTs to reinforcer probabilities, one would not

expect an immediate switch. However, momentary maximizing certainly predicts a positive

correlation between background IRTs and switch probabilities. Fig 13 provides simulated data

for each of the four choice mechanisms considered in this paper, and as can be seen, a momen-

tary maximizing mechanism does produce a positive correlation between runlengths and

switching. This is not born out by real subjects.

In contrast to momentary maximizing, SET*, ATM and melioration all predict flat switch

probabilities regardless of runlength, albeit for different reasons. SET*’s predictions are the

Fig 11. Simulations of discrete-trial clock space data. A discrete-trial concurrent VI 60-s VI 180-s schedule was

simulated using four choice models: melioration, SET*, momentary maximizing, and ATM. The resultant clock spaces

are given here for the last 2,000 choices of each simulation.

https://doi.org/10.1371/journal.pone.0301173.g011
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easiest to grasp, because it uses a stochastic decision rule whose probabilities are given by the

ratio of the molar reinforcement rates at each schedule. Just as the probability of a heads on a

coin toss is independent of previous coin tosses, so too are choices within SET*.
The reason why melioration produces flat switch probabilities given response runs of differ-

ent lengths is slightly more complicated, as the relation between VI richness and window size

is relevant. In general, though, since melioration’s decision rule is based on a comparison

between two averages (i.e., local rates) one would not expect there to be a correlation between

runlengths and switch probabilities. The simulated run-lengths used to create Fig 13 came

from a simulation that used a window size of 60 pecks. Smaller window sizes, assuming no

change in VI schedules, tended to move the function associated with the VI 60 schedule

(shown in Fig 13) up towards an asymptote of 0.5. This is intuitively obvious because with a

window size of 1, switch probabilities depend only on baseline switching probabilities, which

were set at 0.5 in the simulations.

Finally, ATM, like SET* and melioration, also produces flat switch probabilities regardless

of runlength. In fact ATM makes the rather strong claim that the flat switch probabilities

shown by pigeons under concurrent VI VI schedules are a sampling artifact. What matters is

not the runlength but the IRT following the last peck of the run. VI schedules tend to produce

steady rates of responding. Thus, the IRT after the last peck of runs with a length of 3 will, on

Fig 12. Switch probability as a function of perseveration. This figure shows the probability of switching out of a

schedule given increasing background IRTs. Regardless of the time spent responding at a schedule, the likelihood of

switching out that schedule remained, on average, relatively flat. The plots shown here are drawn from birds

experiencing free-operant concurrent schedules of reinforcement [24]. Left-Right plots provide the trained pair of

reinforcement schedules.

https://doi.org/10.1371/journal.pone.0301173.g012
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average, be the same as the IRT after runs with a length of 20. In other words, ATM asserts

that, despite different runlengths, one is sampling the same average IRT.

Data set 4: Multiple concurrent VI VI schedules

The final data set considered here comes from studies utilizing multiple concurrent VI VI

schedules. In such studies, pairs of VI schedules are trained within a single session. For exam-

ple, a subject might experience periods of a VI 20-s VI 60-s schedule intermixed with periods

of a VI 60-s VI 180-s schedule. In a typical experiment the stimuli associated with each rein-

forcement schedule are then paired in novel combinations in order to highlight comparative

preferences and, therefore, the associative processes that might be at work during training. In

fact, melioration, momentary maximizing, SET* and ATM make quite specific and unique

predictions for novel schedule pairings. One set of predictions was presented earlier in the

paper when discussing the ability of these models to account for proportion matching (see

Fig 6). Here we will consider additional data.

Fig 14 provides the predictions of melioration, SET*, momentary maximizing and ATM for

pairing the two VI 60’s and the two relatively rich schedules (i.e., the VI 2060 and VI 60180)

from the schedule combinations just described. As can be seen, melioration predicts strong

Fig 13. Simulations of perservation. A free-operant concurrent VI 60-s VI 180-s schedule was simulated using four

choice models: melioration, SET*, momentary maximizing, and ATM. The resultant conditional probabilities of

switching given runlength are given for the last 2,000 choices of each simulation. Only momentary maximizing

deviated from the pattern found in real birds (Fig 12).

https://doi.org/10.1371/journal.pone.0301173.g013
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preferences for the both the VI 6020 and VI 2060 over the VI 60180. The reason for this is that

overall reinforcement rates have a positive correlation with local reinforcement rates. In the

simulations run here local reinforcement rates in the VI 20-s VI 60-s schedule were approxi-

mately twice as high as those produced in the VI 60-s VI 180-s schedule. Since melioration

asserts that local rates drive choice, it predicts preferences for the 6020 and the VI 2060 when

paired with the VI 60180. Momentary maximizing, on the other hand, predicts indifference

when the two VI 60 stimuli are paired, and a preference for the VI 2060 over the VI 60180. The

preferences come directly from functions given by Eq 2. The functions for the VI 60’s would

be identical, while the function for the VI 2060 would rise three times as fast as that for the

VI60180.

SET* and ATM make predictions for novel VI pairings that are quite different from melio-

ration and momentary maximizing. As can be seen in Fig 14, both of these mechanisms pre-

dict a preference for the VI 60180 over the VI 6020 when their associated stimuli are paired. For

SET*’s account, recall that its mechanism first assumes that subjects learn switch probabilities

given by the ratio the trained, molar reinforcement rates. Therefore, a subject would switch

away from a VI 60180 stimulus with p = .25 and from a VI 6020 stimulus with p = .75. This in

itself would generate a 3:1 preference for the VI 60180 stimulus. However, recall that SET* also

assumes that probabilities are sampled at a rate proportional to the overall rate of reinforce-

ment for each trained pair of concurrent schedules. In this case, a VI 20-s VI 60-s schedule has

an overall rate of reinforcement that is three times that of a VI 60-s VI 180-s schedule. In a

novel pairing of the VI 60’s this would serve to bias the preference even further for the VI 60180

stimulus, producing a preference of 9:1. ATM’s prediction, on the other hand, is derived from

the functions show in Figs 3 and 4. In these figures, rich-schedule switch functions are always

lower than lean-schedule functions. Therefore, in the novel pairing of VI 60’s ATM predicts a

preference for the VI 60180 stimulus because it corresponds to a rich active time function. The

Fig 14. Simulations of concurrent multiple VI VI probe preferences. A powerful procedure for investigating

mechanisms for concurrent VI VI choice involves training separate concurrent VI VI schedules, and then pairing the

associated stimuli in novel pairings. Here, simulations for all four models were conducted for a concurrent VI VI 20-s

VI 60-s schedule and a VI 60-s VI 180-s schedule. Simulated novel pairings involved the VI 6020 vs. VI 60180 and the

VI 2060 vs. VI 60180 stimuli. For melioration predictions were derived by comparing the overall local rates of

reinforcement accumulated during simulated training. For momentary maximizing, Eq 2 provided the predicted

ratios. For ATM active time functions were drawn from Figs 4 and 5 and a response rate of 1/ was utilized. The

predictions for SET* are explained in the text.

https://doi.org/10.1371/journal.pone.0301173.g014
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degree of preference, though, would depend on response rates and the actual differences

between the two functions at different active IRTs. The functions used here produced a 3:1

preference for the VI 60180.

Finally, whereas SET* and ATM both predict preferences in favor of the VI 60180 when the

two VI 60’s are paired, they make different predictions when the VI 2060 and the VI 60180 are

paired. SET*make the strong and counter-intuitive prediction of 3:1 preference for the VI

60180. The reason for this is that the switch probabilities associated with each stimulus would

presumably be the same (p = .25), yet the probability would be sampled three times more

slowly for the VI 60180 stimulus. In contrast ATM predicts indifference between the VI 60180

ad the VI 2060 for the reason that both stimuli would presumably be associated with typical,

rich active time functions.

The predictions just described have in fact been tested for each of the four models consid-

ered in this paper. The first prediction concerning the novel pairing of the two VI 60’s is cap-

tured in an experiment performed by Belke [26]. In Belke’s experiment, pigeons were trained

under multiple concurrent VI 20-s VI 40-s and VI 40-s VI 80-s schedules of reinforcement. In

probe tests, the stimuli associated with the two VI 40-s schedules were paired. Fig 15 provides

the results of his experiment, which was that his birds showed a strong, 4:1 preference for the

VI 4080 stimulus. Further, several labs have performed experiments similar to Belke’s, and in

every case a preference has been found for the stimulus trained with a relatively rich VI sched-

ule (28–30, 68).

Belke’s results, and its replications, support SET* and ATM while contradicting the predic-

tions of melioration and momentary maximizing. Experiments seeking to distinguishing

between SET* and ATM, though, have thus far been inconclusive. On the one hand, Gibbon

[28] conducted a replication of Belke’s experiment and paired the VI 2040 and the VI 4080 sti-

muli in probes. He reported a 2:1 preference in favor of the VI 4080 stimulus. McKenzie &

Fig 15. Experimental replications of Belke 1992. The results of four published studies that trained two pairs of

concurrent VI VI schedules with 2:1 ratios of overall reinforcement rates. For Belke [26], Gibbon [28], and Williams &

Bell [30] the schedules were a VI 20-s VI 40-s and a VI 40-s VI 80-s. For McKenzie & Cleaveland [29] the schedules

were a VI 30-s VI 60-s and a VI 60-s VI 120-s. Probes involved novel pairings of the equivalent VI schedules. In all

cases a preference was found for the relatively rich, though equivalent, VI schedule. Of the models considered in this

paper, only SET* and ATM predict these findings.

https://doi.org/10.1371/journal.pone.0301173.g015
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Cleaveland [29], though, trained pigeons under a similar arrangement–multiple concurrent VI

30-s VI 60-s and VI 60-s VI 120-s schedules—and reported indifference when the VI 3060 and

VI 60120 stimuli were paired. Finally, an experiment by Brown & Cleaveland [27] also sup-

ported ATM while contradicting the predictions of SET*. In their study Brown & Cleaveland

trained pigeons in multiple concurrent VI 30-s VI 30-s and VI 60-s VI 60-s schedules. They

then probed their subjects with pairings of the VI 30 and VI 60 stimuli. Fig 16 provides the

results of the experiment. As can be seen on average the birds showed indifference in the

probe pairings. In addition ATM fit the data of individual subjects much more closely than did

SET*, and as described earlier in the paper (Fig 6), ATM predicts the choice outcomes that are

seen when birds are allowed to respond at different rates.

Conclusion

This paper has shown how a relatively simple model, the active time model (ATM) can

account for a range of data not previously brought under a single explanatory framework. Fur-

ther, the paper showed how the assumptions underpinning ATM–IRT control of choice, rela-

tivistic response units (i.e., “switch” vs. “stay”), and Markov state spaces—are already

established in the literature. Table 3 summarizes the fits produced by ATM, melioration,

momentary maximizing, a version of scalar expectancy theory, SET*, to the four data sets con-

sidered in this paper.

All four models tested in this paper produced data in line with the matching law, with a ten-

dency towards undermatching. While only ATM and momentary maximizing accurately cap-

tured the molecular structure of responding in a free-operant procedure, only ATM and SET*
could account for such structure in a discrete-trial procedure. With regards to a sensitivity to

background IRTs, melioration, SET* and ATM predicted the flat switch functions that have

repeatedly been reported in the literature. Finally, only SET* and ATM predict the novel pair-

ings of stimuli trained under multiple concurrent VI VI schedules, and there is reason to

believe that in this data set, ATM produces the better fit. In summary, then, only ATM pro-

vided a qualitative fit for all four data sets.

Fig 16. Taken from Brown & Cleaveland [27]. All birds were first trained using multiple concurrent VI 30-s VI 30-s

and VI 60-s VI 60-s schedules of reinforcement. The figure provides the preference for a VI 60-s stimulus in probe

pairings that with a stimulus trained with either a VI 30-s or a VI 60-s stimulus. The dashed horizontal line indicates

indifference. The simulations of SET* and ATM are described in the original article.

https://doi.org/10.1371/journal.pone.0301173.g016
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Despite ATM’s obvious strengths it is not without weaknesses. Currently, the origins of the

active time switch functions (Figs 3 and 4) remain unknown. Therefore, there is no principled

means of predicting the model’s boundaries. Will a changeover delay affect these functions?

Will differential reward amounts affect these schedules? These are questions which currently

must be empirically answered. However, in defense of ATM most steady state models of choice

do not specify the dynamic, moment-moment mechanisms that generate their steady-state

assumptions. Of the models considered in this paper, only scalar expectancy theory is truly a

dynamic model. Momentary maximization does not specify how an organism learns to associ-

ate IRTs with reinforcement probabilities (just that they do), and melioration does not specify

its window over which local reinforcement rates are calculated.

Relative parsimony, too, might be held up as a criticism of ATM. ATM assumes that each

discriminative stimulus is associated with a function that relates active time to switch probabil-

ities. This might appear to give ATM more latitude than melioration, momentary maximizing

and SET*. Such a perspective is misleading. For example, momentary maximizing assumes

that an organism also has a distinct, VI-specific switch function associated with each discrimi-

native stimulus in a concurrent VI VI experiment. One function relates active IRTs to rein-

forcement probabilities, while another relates background IRTs to reinforcement probabilities.

These are then somehow compared in order to produce a schedule response. Such “parame-

ters” are somewhat hidden by the intuitively simple, “choose the higher probability of rein-

forcement.” In addition, the functions proposed by momentary maximization simply do not

have empirical support. As Data Set #3 makes clear, the typical procedures used in concurrent

VI VI experiments have found no relationship between background IRTs and switch probabil-

ities. That such a relation exists, though, is a core assumption of momentary maximization.

Similar criticisms can be leveled for melioration and SET*. Melioration does not specify the

window over which local rates are calculated. SET*, too, assumes unique interreinforcement

functions for each discriminative stimulus as well as functions for sampling these distributions

(and additional parameters not utilized in this paper). Taken together, then, ATM is at least as

parsimonious as the models considered in this paper, with the addition of having each of its

core assumptions grounded in empirical findings.

However, as the Introduction of this paper hopefully made clear, it is unlikely that ATM is

themodel of concurrent VI VI behavior. First, the matching law can be produced by all four of

Table 3. Four VI VI choice mechanisms and their fit of four data sets.

Melioration Momentary Max. SET* Active Time

Controlling Stimulus Local Reinf rate Reinforcement probabilities Memory for Inter-Reinf. Times Most recent, single IRT

Data Set 1

Generate matching? Yes Yes Yes Yes

Data Set 2

Fit IRT Structure? No Yes No Yes

Data Set 3

Fit runlength data? Yes No Yes Yes

Data Set 4

Fit Belke (1992) No No Yes Yes

&

Brown & Cleaveland No No No Yes

(2009)

A summary of whether the given model was found to accurately fit each of the four data sets considered in the paper. The controlling stimulus of each model is

provided.

https://doi.org/10.1371/journal.pone.0301173.t003
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the mechanisms described in this paper. Second, there is also evidence that experimental con-

tingencies can bring the behavior of pigeons under the control of IRTs [e.g., 33, 34], inter-rein-

forcement intervals [e.g., 70], and local rates of reinforcement [e.g., 8, 9]. Given this data, it is

reasonable to assume that, with the appropriate environmental configuration, momentary

maximizing, SET* and melioration will prove to be the operative mechanism for a range of

procedures.

Operant choice, then, is most likely multiply determined at the molar, local and / or molec-

ular level, and the task of the psychologist is to elucidate the mechanisms that produce behav-

ior and the local environments under which those mechanisms are operative for any given

organism. From this perspective whether one controlling variable is more fundamental than

another, e.g., molar reinforcement rates vs. optimality principles, is beside the point. What is

required is a framework that recognizes the selection / assignment-of-credit pressures imposed

on the organism [e.g., 71, 72], and the continued exploration of the types of choice mecha-

nisms available to an organism.
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